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Abstract

Principle of alternating gradient acceleration is proposed
to overcome one of the major limitations on laser acceler-
ation: phase slippage due to the difference between phase
velocity of acceleration wave and longitudinal speed of ac-
celerated particle. According to the principle, net accel-
eration can be achieved in various ways even under con-
tinuous phase slippage. Single particle dynamics of both
longitudinal and transverse motions are investigated under
alternating gradient acceleration.

1 INTRODUCTION

In all known accelerators, acceleration gradient is kept pos-
itive along the entire passage of accelerated particles. This
is so for a good reason, of course, as synchronous acceler-
ation or all-positive-gradient acceleration can be achieved
so easily that there is no need to do it otherwise. How-
ever, situation can be drastically different when accelera-
tion wavelength is scaled down, where phase slippage be-
comes a critical problem limiting net acceleration.

For direct field laser acceleration, major difficulties have
been encountered when trying to maintain synchronous ac-
celeration. In all schemes proposed so far, the approach
to overcome phase slippage is to either place structures in
the near field of intense laser and particle beams or load
gases directly in the passage of the beams, in an effort to
either terminate the interaction or slow down the accelera-
tion wave. As a result, hefty price has to be paid by sacrific-
ing acceleration gradient and beam current, and in doing so
the very attractiveness of the laser acceleration schemes is
severely compromised. Phase slippage is also a major lim-
itation for ponderomotive driven acceleration in all laser-
plasma-based schemes.

In this report, Principle of Alternating Gradient Acceler-
ation (PAGA) is proposed to overcome the phase slippage
problem. According to the principle, net acceleration can
be achieved in various ways even under continuous phase
slippage. Several schemes based on the principle have been
proposed to achieve high average gradient for both direct
field and ponderomotive driven accelerations [1, 2, 3, 4, 5].
Therefore, synchronous acceleration, a concept so deeply
rooted in the conventional accelerator physics and practice,
is neither a necessary condition nor worthy of striving for
in order to achieve high gradient laser acceleration. It is
now the time to cross over a major conceptual threshold.

The dramatic change of operation principle from syn-
chronous acceleration to alternating gradient acceleration
may have profound impact on the beam dynamics we used
to know. The main purpose of this report, therefore, is to
establish a new foundation for both longitudinal and trans-

verse dynamics, and reveal some unique characteristics of
beam dynamics under the new principle.

Taking a perspective in a broader scale, PAGA is pro-
posed as one of the two pillars for a new landscape of
laser accelerations. The other pillar, Concept of Oversized
Open Waveguide (COOW), is required to overcome other
two major limitations on laser acceleration: diffraction of
laser field and structure damage by high power laser. By
supporting each other in harmony, the two pillars together
support a great variety of architectures that are capable of
overcoming simultaneously the three major limitations and
hence to provide high gradient acceleration over much ex-
tended length in single stage with durable solid-state accel-
eration structures. Readers are referred to my recent arti-
cles [1, 2, 3, 4, 5, 6, 7] for a more complete exposition of
the entire framework.

2 THE PRINCIPLE

Longitudinal field of a traveling wave seen by a charged
particle moving on an orbit defined by t(z) is of the form

E [z, t(z)] = E(z) cosψ(z) . (1)

Assuming phase velocity of the wave and longitudinal
speed of the particle are different, the particle is accelerated
over a distance La corresponding to a π phase slippage,
and then decelerated over Ld correspondingly to another π
phase slippage. Respectively, the energy gain and loss are

∆Wa =
∫ La

0

E(z) cosψ(z)dz = qEaLaTa ,

∆Wd =
∫ L2π

La

E(z) cosψ(z)dz = −qEdLdTd ,

where L2π = La + Ld, Ea(Ed) is the magnitude of peak
acceleration (deceleration) field, and Ta(Td) is a transit fac-
tor over the distance La(Ld) satisfying 0 < Ta ≤ 1 (0 <
Td ≤ 1). The average gradient over L2π is then

G2π =
∆Wa + ∆Wd

La + Ld
= Ga

[1 − (Ed

Ea
)(Ld

La
)(Td

Ta
)]

1 + Ld

La

,

where Ga = ∆Wa/La > 0 is the average gradient over
La. Thus, the condition requiring net energy gain over a
2π phase slippage follows

G2π > 0 =⇒
(
Ed

Ea

) (
Ld

La

) (
Td

Ta

)
< 1 . (2)

Equation (2) is a general statement of the principle of alter-
nating gradient acceleration, applicable to all types of ac-
celerations under continuous phase slippage. It also reveals
the variety of approaches in achieving net acceleration.
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3 LONGITUDINAL DYNAMICS

We now discuss single particle dynamics of longitudinal
motion in the field of Eq.(1) under continuous phase slip-
page. In particular, we consider direct field acceleration
by an electromagnetic wave confined in a waveguide. For
electron with q = −e, energy equation can be written as

dγ

dz
= −ka cosψ , (3)

where

a =
eE(z)λ
2πmc2

, ψ = ωt−
∫ z

0

kz(s)ds .

The electron phase may be separated into two parts, ψ =
ψl + ψγ , where ψl depends on accelerator lattice

ψl =
∫ z

0

ds[k − kz(s)] ,

and ψγ depends on particle’s energy and initial phase

ψγ =
∫ z

0

dsk

(
1

β(s)
− 1

)
+ ψ0 , ψ0 = ωt0 .

We are interested in the relativistic regime satisfying
∣∣∣∣dψl

dz

∣∣∣∣ �
∣∣∣∣dψγ

dz

∣∣∣∣ .
Consequently, we may define a lattice period, L2π , accord-
ing to the condition for a 2π phase slippage by

|∆ψl(∆z = L2π)| = 2π .

In addition, we introduce a(z) = as(z)fl(z), where as(z)
is assumed to vary slowly in the scale L2π , fl(z) and kz(z)
are periodic functions with period L2π and 0 < fl(z) ≤ 1.

Taking average of Eq.(3) over the fast scaleL2π , one gets

dγ̄

dz
= −kas(Cl cosψγ − Sl sinψγ) ,

where γ̄ =< γ >, Cl =< fl cosψl >, Sl =< fl sinψl >
are averaged quantities. Obviously, net energy exchange is
possible if Cl �= 0 or Sl �= 0. For convenience we may set
the lattice such that Cl = 0 and Sl > 0. Hence, longitudi-
nal equations of motion in slow scale become

dγ̄

dz
= kasSl sinψγ ,

dψγ

dz
=

k

2γ̄2
. (4)

It is important to note that Eq.(4) is casted into the same
form as the usual equations of motion for a linac [8]. As a
result, our entire wealth of knowledge about synchronous
acceleration can be directly applied to the case of alternat-
ing gradient acceleration. For example, period of small am-
plitude synchrotron oscillation follows directly from Eq.(4)

λs =
γ̄3/2λ√

asSl cosψγ

. (5)

4 TRANSVERSE DYNAMICS

Transverse motion of an electron under direct field alter-
nating gradient acceleration by a TM mode can be derived
from the radial equation of motion

d(γr′)
dz

= − e

mc2
(Er − βcµ0Hφ) , (6)

where r′ = dr/dz. The transverse field components
can be related to the acceleration field, Ez(r, z, t) =
J0(k⊥r)E(z, t), in paraxial approximation by [8]

Er(r, z, t) = r
∂Er

∂r

∣∣∣∣
r=0

= − r

2ε
∂(εE)
∂z

,

Hφ(r, z, t) = r
∂Hφ

∂r

∣∣∣∣
r=0

=
εr

2
∂E
∂t

,

where ε = ε0ε1, ε1 = ν2
1 , ν1 = 1+δν1. Hence from Eq.(6)

d(γr′)
dz

=
er

2mc2

[
∂E
∂z

+
βε1
c

∂E
∂t

+
(

1
ε1

∂ε1
∂z

)
E
]
. (7)

Upon introducing reduced variable Q =
√
γr [9], Eq.(7)

can be converted into the form of Hill’s equation

Q′′ +KrQ = 0 , (8)

where

Kr =
k2

γ

(
a2 cos2 ψ

4γ
− a sinψ

2γ2
+ aδν1 sinψ − ab cosψ

)
,

b =
λ

2π
∂δν1

∂z
.

There are four small parameters: 1/γ 	 1, a 	 1, |b| 	
1 and |δν1| 	 1. To compare the relative magnitude of b
and δν1, it is convenient to introduce a profile function

fd(z) =
1

1 + e−(z+Ld/2)/∆
− 1

1 + e−(z−Ld/2)/∆
, (9)

where Ld is the width of the profile, ∆ is the width of rising
or falling edge, and 0 ≤ fd ≤ 1. Note, with ∆/Ld 	 1,
fd approaches a square profile. Using Eq.(9), we have∣∣∣∣ b

δν1

∣∣∣∣
max

=
λ

2π

∣∣∣∣∂ ln(fd)
∂z

∣∣∣∣
max

=
λ

2π∆
.

Thus, for highly relativistic particle in a medium loaded
structure with slow rising and falling edges satisfying
(λ/2π∆) 	 1, Kr is dominated by one term

Kr =
k2aδν1 sinψ

γ
.

To realize alternating gradient acceleration, we consider
a specific scheme [1, 2] in which an oversized open waveg-
uide supporting TM01 mode is periodically loaded along z
direction with plasma layers, each of width Ld and sepa-
rated by a vacuum of distance La. The plasma density pro-
file can be specified by n(z) = n0fd(z), corresponding to
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a reduction in the index of refraction δν1 = −fd(z)/2γ2
p ,

where γp = ω/ωp � 1 and ωp is the plasma frequency
associated with the peak density n0. In this scheme, Ea =
Ed = E, Ta = Td = 2/π, fl = 1, and

Sl =
2
π

(
1 − ξ

1 + ξ

)
,

where ξ = Ld/La, which varies in the range {0 − 1}, and
under the condition ∆/Ld 	 1, fd is approximated by a
square profile, shifted in z from Eq.(9)

fd(z) =
{

0 : 0 ≤ z ≤ La

1 : La < z ≤ L2π .
(10)

When considering dynamics in the fast scale, we may ne-
glect slow synchrotron motion by setting ψγ = ψ0, and
furthermore, ψ0 = π/2 for maximum acceleration, thus

dγ

dz
= ka sinψl , (11)

Kr(z) = −κfd(z) cosψl(z) , (12)

where κ = k2a/2γγ2
p . Noting that kz = kν1(1 − 1/2γ2

g)
[1, 2, 4, 5], where γg is a quantity determined by the waveg-
uide, the lattice phase ψl can be expressed as

ψl(z) =
(

k

2γ2
g

)
z +

(
k

2γ2
p

) ∫ z

0

fd(s)ds . (13)

Thus by definition, we obtain from Eq.(13), using Eq.(10)

La = γ2
gλ , Ld =

γ2
pλ

1 + (γp/γg)2
.

Finally, the lattice phase ψl can be reduced to

ψl(z) =
{ π

La
z : 0 ≤ z ≤ La

π
Ld

(z − La) + π : La ≤ z ≤ L2π .
(14)

Indeed, with Eq.(14), we observe Cl = 0.
Given Eqs.(8,10,12,14), an alternating gradient focusing

lattice is fully specified. Applying the smooth approxima-
tion [10] to the lattice, the β-function is found to be

βt =
(
γmc2

G2π

)
fξ , (15)

where

G2π =
d(γ̄mc2)

dz
= eESl ,

fξ =
4

π
√

2ξ(1 + ξ) − 16ξ2/π2
.

It is noted that because of the scaling βt ∼ γ, electron
beam size remains constant during acceleration for the AG
focusing lattice discussed here. Thus, the acceptable value
for normalized rms beam emittance can be determined by
the condition

εn ≤ G2πσ
2
max

mc2fξ
, (16)

where σmax is the maximum rms beam size limited by con-
siderations of waveguide aperture and beam dynamics.

5 EXAMPLE

An example of alternating gradient acceleration is given in
table 1 for highly relativistic electron satisfying the con-
ditions (γ/γg)2 � 1 and (γ/γp)2 � 1. The example is
taken from [2], although the acceleration scheme was also
presented in [1]. In this example, direct field acceleration
by TM01 mode is taken place in a capillary waveguide pe-
riodically loaded with plasma layers. Taking σmax/R =
0.1, it then follows from Eq.(16) that εn ≤ 0.25mm-mrad.
For electron energy of 1 GeV, Eq.(5) gives λs = 4.9m as-
suming cosψγ = 1 for maximum longitudinal focusing,
and Eq.(15) gives βt = 3.1m.

Table 1. Direct Field Alternating Gradient Acceleration

λ [µm] 1 P0 [TW] 10 Ea [GV/m] 1.9

R/λ 200 n0[1017/cm3] 1.1 Es [GV/m] 1.5

ν2 1.5 Lattn [m] 5.3 G2π [GeV/m] 1

γg 328 La [cm] 10.8 ∆Wa [MeV] 127

γp 100 Ld [cm] 0.91 ∆Wd [MeV] -11

Sl 0.53 fξ 3.1 as [10−3] 0.59

6 CONCLUSIONS

The analysis of single particle dynamics reveals no show-
stopper for alternating gradient acceleration. In fact, the
longitudinal dynamics in the slow scale is shown to be iden-
tical to that for synchronous acceleration. On transverse
dynamics, the AG focusing inherent from the direct field
acceleration is found to be surprisingly favorable for its
weaker focusing strength, resulting in much relaxed align-
ment tolerance and smaller emittance growth. Although the
dynamics presented here is focused on direct field acceler-
ation, the general dynamical characteristics under alternat-
ing gradient acceleration are expected to hold for pondero-
motive driven acceleration as well. Effects of plasma wake-
fields driven by laser and particle beams will be treated
elsewhere. This work was supported by the U.S. Depart-
ment of Energy under contract No.DE-AC03-76SF00098.
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