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Abstract

The LEDA RFQ is a 100% duty factor (CW) linac that
delivers >100 mA of H+ beam at 6.7 MeV.  The 8-m-long,
350-MHz RFQ structure accelerates a dc, 75-keV, 110-
mA H+ beam from the LEDA injector with ~94%
transmission. After the ~200-µsec-long turn-on transient,
RFQ output beams with currents >90 mA have RFQ
transmission that is ~10% lower than the PARMTEQM
prediction. Raising the rf cavity field level to 105-110%
of the design field increases the RFQ transmission to the
design value.  Preliminary analysis of the 93-mA quad-
scan data suggests the RFQ output beam rms emittance, εx

≈=0.25 π mm mrad (normalized), is less than the measure-
ment error away from the design, 0.23 π mm mrad.

1  INTRODUCTION
The LEDA RFQ [1,2] is a 100% duty factor (CW) linac

that delivers >100 mA of H+ beam at 6.7 MeV [3,4].  The
8-m-long, 350-MHz RFQ structure [5] accelerates the dc,
75-keV, 110-mA H+ beam from the LEDA injector [6]
with ~94% transmission. The primary objective of LEDA
is to verify the design codes, gain fabrication knowledge,
understand beam operation, measure output beam charac-
teristics, learn how to minimize the beam-trip frequency,
and improve prediction of costs and operational availabil-
ity for the full 1000- to 1700-MeV APT accelerator.
Preliminary RFQ commissioning results for pulsed beams
with low currents, low repetition rates, and short pulse
lengths are given in Ref. [7]. This paper gives the LEDA

Figure 1.  LEDA configuration for RFQ commissioning.
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Figure 2. The LEBT beamline with optics and
diagnostics.

RFQ commissioning results obtained after the initial high-
current pulsed and CW operation described in [3] and [4].

2  LEDA CONFIGURATION
The accelerator configuration for beam commissioning

of the LEDA RFQ is shown in Fig. 1 [2-4].  Major
subsystems are the injector [6], ion source and low-energy
beam transport (LEBT); RFQ [4,5]; high-energy beam
transport (HEBT) [8]; and the beamstop [9].  The injector
(Fig. 2) matches the 75-keV, 110-mA dc proton beam into
the RFQ. Simulations, based on offline measurements,
indicate the rms normalized emittance of the RFQ input
beam is ≤0.23 π mm mrad [6].  A current modulator
feeding the microwave magnetron provides beam pulsing
[10] for commissioning and beam-tuning activities.  The
LEBT diagnostics include a pulsed-current toroid, located
directly before the RFQ (AC toroid 3), that is used in
determining the RFQ transmission.

 Figure 3 shows the LEDA RFQ configuration.  Unique
features of this RFQ [5, 11-12] include its long physical
length (8 m), high output energy (6.7 MeV), large beam
power (670 kW), and structure cooling required (1.5
MW).  Constructed as an all-brazed, 100% copper (OFE)

Figure 3.  LEDA RFQ configuration.
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Figure 4.  Layout of HEBT beamline optics and
diagnostics.  Beam direction is from left to right.

structure, it is assembled from eight 1-m-long sections.
Two 1-m sections are joined to form a segment.
Adjoining 2-m-long segments are resonantly coupled
together to form the 8-m-long RFQ.  Of the eight sections,
two are used for 350-MHz rf power feed [13] via six 350-
kW coupling irises and three sections provide vacuum
pumping. The six 350-MHz rf vacuum windows have
been tested at power levels >950 kW [14].  During
operation, these windows are run at power levels up to
360 kW each.  Each section includes 16 static slug tuners,
used only for tailoring the initial field distribution. When
in operation, its only active resonance control is by modu-
lation of the input water temperature [4,15]. A complete
description of the LEDA RFQ, including the RFQ rf-field
tuning procedure, resonance control, and initial beam
measurement results, is given in Refs. 4 and 16.

A schematic of the LEDA HEBT showing the location
of beamline optics and diagnostics is given in Fig. 4.  The
function of the LEDA HEBT is to characterize the
properties of the beam and transport the beam with low
losses to a shielded beamstop.  The beamline optics con-
sist of four quadrupoles and two X-Y steering magnets.

The HEBT beam diagnostics [17] allow pulsed-beam-
current, dc-beam-current, and bunched-beam-current as
well as transverse centroid, longitudinal centroid (i.e.,
beam energy from time-of-flight and beam phase), and
transverse beam profile (wire scanner and beam-induced
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Figure 5. The number of beam trips vs. trip duration (data
archived in 1 s intervals) for the 116 min run.
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Figure 6. RFQ output beam current vs. time into a 300-
µsec long pulse for the design RFQ rf-field level.

fluorescence) measurements. The 6.7-MeV, 100-mA RFQ
output beam impinges on a nickel ogive beamstop [9] that
is mounted inside an aluminum vessel containing water to
shield against prompt neutrons.

 3  BEAM COMMISSIONING RESULTS
AND DISCUSSION

At the time of the November 1999 Physics of High-
Brightness Beams Workshop [3,4], a RFQ output CW
beam current of 100 mA and RFQ transmission of 94%
had been achieved.  Since that time we have accumulated
>30 hr of LEDA RFQ operation with at least 100 mA of
CW output beam current and >70 hr with at least 90 mA
of CW output beam current.  For one run of 116 min (Fig.
14 of Ref. 4), most of the beam interruptions were 1-6 s in
duration (Fig. 5).  Recovery from these interruptions,
most of them arising from short-duration injector sparks,
was automatic (no operator intervention).

We find that during pulsed beam operation for RFQ rf-
field levels at the design value, for pulse lengths >200 µs,
and for RFQ output beam currents >90 mA, the RFQ
transmission drops abruptly about 100 µs into the beam
pulse.  The transmission then appears to remain constant
at the lower value for the duration of the pulse, including
CW operation.  The RFQ output beam current for a 300-
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Figure 7.  RFQ total and accelerated beam transmission
vs. rf cavity field level at the start (crosses) and at the end

(dashes) of a 500-µs-long, 90-mA beam pulse.

Proceedings of EPAC 2000, Vienna, Austria970



0

2

4

6

8

10

12

14

4.5 5.5 6.5 7.5 8.5 9.5 10.5

Q2 (T/m)

X
rm

s 
(m

m
)

Measured rms

LINAC

Figure 8.  93-mA x-scan data (diamonds) taken three
different days.  The LINAC calculation (triangles, line)

has Twiss parameters as described in the text.

µsec-long beam pulse is shown in Fig. 6.  About 125 µsec
into the pulse the current abruptly drops by ~10%. Figure
7 shows the measured values for the total beam
transmission at the start and end of a 500-µs, 2-Hz, 90-
mA beam pulse.  At the end of the pulse the total
transmission deviates from the PARMTEQM prediction
for 108-mA output beam current over the field-level range
88-98% of the design (Fig.7). The total transmission at
the start of the pulse follows the PARMTEQM prediction
for the range 0.91-1.1 of the design rf-field level.  For
output beam currents >90 mA, e.g. 100 mA, the RFQ
trans-mission over the whole pulse is increased to the
design value by increasing the rf-field level to 105-110%
of the design field.  Both the rf power system and the
RFQ cooling system allow this increase - the only
drawback is that the RFQ requires 10-20% more input
power.  These measurements will be described in more
detail in [18].

 The LEDA RFQ output beam emittance is measured
[19] using the quadrupole-magnet scan technique [19,20].
Preliminary analysis, using the LINAC beam-optics code,
of three x quad scans for a 93-mA pulsed beam is shown
in Fig. 8: the RFQ output beam Twiss parameters used in
the LINAC HEBT model are αx = 1.8, βx = 36 cm, and
εx = 0.25 π mm mrad (normalized) [19].  The 0.23 π mm
mrad rms emittance predicted by PARMTEQM for a 100-
mA RFQ output beam is within the error bars of the quad-
scan emittance measurement.  For the nominal HEBT
tune, LINAC predicts the beam emittance grows in the
HEBT by 30% in the transport from the RFQ to the
beamstop [8]. LINAC and IMPACT, beam-optics codes
that includes non-linear space-charge effects, are both
being used to analyze the quad scan data [19,20].

4  SUMMARY
The LEDA RFQ has operated with 100-mA CW output

beam for over 30 hr cumulative: it has operated >70 hr
cumulative with ≥90-mA CW output beam.   Analysis of
the data presented in this paper continues.  Further com-
missioning results will be published in [16, 18-20].  We

are now preparing to intentionally introduce and measure
the beam halo in a 52-magnet FODO lattice [21,22].
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