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Abstract

It is imperative for linear colliders that the bunch length be
adjustable. In most cases bunch compression is required,
but recently, in the design of the Compact LInear Collider
(CLIC) RF Power Source, it was shown that bunch stretch-
ing may also be necessary. In some situations, both modes
may be needed, which implies the need for tunable mag-
netic insertions. This is even more essential in a test facil-
ity, to span a wide experimental range. In addition, flex-
ible tuning provides a better control of the stability of an
isochronous insertion. To start a numerical search for a
tunable insertion from scratch is very uncertain because
the related phase space is very uneven. However, a start-
ing point obtained with an analytical approximation is often
sufficient to ensure convergence. Another advantage of the
analytical treatment described in this paper is that it sheds
light on the shape of the entire phase space. To achieve this
the isochronous achromat developed previously has been
given tuning capabilities by expanding the expressions ob-
tained for its main parameters. An application to the future
CLIC Test Facility (CTF3) is shown.

1 INTRODUCTION

Lately the CLIC study [1], [2] made two very important ad-
vances. Firstly a consistent set of parameters for the main
linac was found, which made the relative tolerances com-
parable with those of the other proposed electron-positron
colliders [3]. Secondly an efficient RF Power Source was
designed [4]. Among the many parameters, the length of
the bunch is an essential quantity. It should be 30µm in-
side the main linac and carefully controlled in the bends of
the injector complex. The isochronous rings and transfer
lines of the RF power source also require that the bunch
length of the drive beam be modified, either by stretching,
in order to limit the coherent synchrotron radiation effects,
or by compression, in order to optimise the power trans-
fer to the main beam. In the first order approximation the
bunch length is proportional to theR56 parameter which is
defined by the following integral :

R56 =
∫ s2

s1

Dx

ρ(s)
ds (1)

whereDx is the horizontal dispersion,ρ(s) the radius of
curvature, ands1,s2 are the longitudinal coordinates of the
beginning and end of the beamline considered. TheR 56

parameter is positive if high momentum particles of the
bunch travel longer paths. Of course the values of theR 56

parameter of the various insertions can be fixed at the de-
sign stage, but the operation of both the accelerator and

the decelerator are much easier if some flexibility is given
to modify it in a given range. This flexibility becomes
a feature in a test facility such as CTF3 [5], whose pur-
pose is to validate most of the RF Power Source design
and at the same time to study the behaviour of coherent
synchrotron radiation for which the theory and the simula-
tions remain to be confronted with experimental data. Thus
a study was started to find an ensemble of several mag-
netic components (dipoles and quadrupoles) called an “in-
sertion”, which would be able to generate both a negative
or a positiveR56 parameter by only modifying the strength
of the quadrupoles. Quite naturally the isochronous inser-
tion developed five years ago [6] was chosen as a promising
candidate. It turned out that it was possible to obtain the
expression for the absolute values of the focal lengths as a
function of theR56 parameter in the thin lens approxima-
tion. This will be shown in the next section. It demanded
much more algebra to derive the conditions on the mini-
mum and maximum values of theR56 parameter and on
the drift lengths, such that the absolute values of the fo-
cal lengths were positive. Actually sixteen different sets
of conditions exist [7]. It is impossible to decide analyt-
ically which one is best. This depends on the geometry
and on the constraints imposed on the Twiss parameters at
the entrance and exit of the insertion. A simple interactive
program guides the user towards the best choice. The last
section shows an application to the transfer line between
the Delay Loop and the Isochronous Ring of CTF3.

2 THE TUNABLE ACHROMAT

Let us consider a module consisting of three bending mag-
nets, geometrically and magnetically symmetric around the
median plane of the second magnet [6]. To simplify the al-
gebra, these magnets are treated as sector magnets of the
same lengthlm but of different deflection anglesφ1 andφ2

for the first and second dipole respectively. The space be-
tween the first two magnets is filled by a drift lengthL1, by
a focusing quadrupole of lengthlq and normalised gradient
k1, by a second drift lengthL2, by a defocusing quadrupole
of length lq and normalised gradientk2, and finally by a
third drift lengthL3 [6]. Assuming that the dispersion and
its derivative are zero at the entrance of the first dipole,
the contributions of the first dipole and of half the second
dipole to the integral (1) are [6] :

ρ1 (φ1 − sinφ1)
and (2)

Dj sin (φ2/2) − ρ2D
′
j [cos (φ2/2) − 1] +

ρ2 [φ2/2 − sin (φ2/2)]
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respectively, whereρ1 andρ2 are the curvature radii of the
first and of the second dipole respectively andD j andD′

j

are the dispersion and its derivative at the entrance to the
second dipole. Adding the two contributions, theR56 pa-
rameter for half the insertion is given by :

R56

2
= ρ1 (φ1 − sin φ1) + Dj sin (φ2/2)−

ρ2D
′
j [cos (φ2/2) − 1] + ρ2 [φ2/2 − sin (φ2/2)] (3)

In order to obtain a nondispersive module, the derivative
of the dispersion at the point of symmetry should be zero,
providing a second equation :

− sin (φ2/2)
ρ2

Dj + D′
j cos (φ2/2) + sin (φ2/2) = 0 (4)

From these two equations it is easy to obtain :

D′
j =

x

ρ2

Dj = ρ2

[
1 + D′

j cot (φ2/2)
]

x =
R56

2
− lm

(
3
2
− sin φ1

φ1

) (5)

It is possible to obtain, in the same way as in reference
[6] the following expressions for the first two drift lengths
as functions ofk1,k2 and of the third drift lengthL3 :

L1 = a
C2q1

C1q2

(
L̃3 + q2

)
− l + q1

L2 = q1 − q2 +
b

L̃3 + q2

L̃3 = L3 −
Dj

D′
j

(6)

where

l = ρ1 tan (φ1/2) a = − x

ρ2 sin φ1
(7)

b =
q2

C2

(
q2

C2
+

q1

aC1

)
qi =

Ci

Si

√
ki

(8)

C1 = cos
(
lq

√
k1

)
S1 = sin

(
lq

√
k1

)
(9)

C2 = cosh
(
lq

√
k2

)
S2 = sinh

(
lq

√
k2

)
(10)

These drift lengths depend on the parameterR56 through
the quantitiesDj and D′

j. The aim of the study is to
achieveR56 tuning i.e. the ability to vary this parameter
between a minimum value (negative)R56,min and a max-
imum value (positive)R56,max without of course displac-
ing the quadrupoles. ThusL1, L2 andL3 are fixed and
the normalized strengthsk1 andk2 should be expressed as
functions ofR56, which implies inverting the two equations
(6). Unfortunately these are trascendental equations and

no closed form may be obtained fork1 andk2. However
it can be shown that it is possible in the thin lens approx-
imation, that is for such a smalllq that the assumptions
C1 = C2 = 1, S1 = lq

√
k1 andS2 = lq

√
k2 hold to a

very good accuracy. Then the absolute values of the focal
lengthsf1 = lqk1 andf2 = lqk2 replaceq1 andq2 respec-
tively and the set of equations (6) becomes :

L1 = a
f1

f2

(
L̃3 + f2

)
− l + f1

L2 = f1 − f2 +
f2 (f2 + f1/a)

L̃3 + f2

(11)

which can also be expanded in the form :

a + 1
a

f1f2 + L̃3f1 −
L1 + l

a
f2 = 0

a + 1
a

f1f2 + L̃3f1 −
(
L̃3 + L2

)
f2 − L2L̃3 = 0

(12)

Subtracting the two equations,f2 can be obtained :

f2 =
aL2L̃3

L1 + l − a
(
L2 + L̃3

) (13)

and by replacing this value in the first equation,f1 is also
obtained :

f1 =
L2 (L1 + l)

L2 + L1 + l − aL̃3

(14)

By using the expressions (5) and (7) the quantitya
Dj

D′
j

which enters iñL3, becomes :

a
Dj

D′
j

= − 1
sinφ1

[x cot (φ2/2) + ρ2] (15)

Using this expression and the definition ofa, f1 andf2 can
be expressed as functions ofx, which is linearly related to
theR56 parameter as shown by equation (5) :

f1 = L2

ρ2 (L1 + ρ2)
xL3 + ρ2 (L1 + L2 sin φ1)

f2 = L2

− xL3 + ρ2
2

x (L2 + L3) + ρ2L1

(16)

where :

L1 = (L1 + l) sin φ1 − ρ2

L3 = L3 − ρ2 cot (φ2/2)
(17)

In order to design aR56 tunable module, it is necessary to
find the intervals ofL1, L2, L3 such that the absolute val-
ues of the focal lengths remain positive whenR56 varies in
the intervalR56,min < R56 < R56,max with R56,min < 0
andR56,max > 0. The algebra is very tedious and can
be found in [7]. Sixteen different sets of conditions satisfy
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the imposed constraints. A simple interactive program per-
mits to choose the best one according to the geometry and
Twiss parameter requirements. A standard program for ac-
celerator design, such as MAD can then be used to derive
the thick lens solutions using the thin lens results as a very
effective starting point.

3 APPLICATION TO A CTF3 TRANSFER
LINE

The CTF3 transfer line between the Delay Loop and the
Combiner Ring should be able to increase or decrease the
bunch length by 1.6 mm. Given the∆p/p of the order of
1 %, the range ofR56 is between -0.16 m and 0.16 m.
To accomodate this transfer line in a ’S’ shape inside the
available space, it is made of two insertions, one bending
the beam by75◦ and the other bending it back by−75◦.
The analytical approach has permitted an identification of
the ranges of possible solutions without using numerical
searches which are very unstable in this specific problem.
Thus the insertion could be optimised to find a compromise
between the overall length imposed by the building dimen-
sions, and the optics (Twiss parameters). The most useful
condition in the design of this CTF3 transfer line has been
the fifteenth set [6]. The three dipoles of the selected in-
sertion have the same length (0.4 m) and generate the same
beam deflection (25◦). The drift lengths areL1 = 1.2 m,
L2 = 0.6 m andL3 = 1.55 m. All the quadrupoles have the
same length of 0.2 m. For a beam energy of 400 MeV, the
gradients of the first and second quadrupoles vary between
12.04 T/m and 7.81 T/m, and between 12.13 T/m and 1.29
T/m respectively. The Figures 1, 2 and 3 show the optical
functions of the full insertion when theR56 parameter of
half one single insertion is -0.04 m, 0 m, 0.04 m respec-
tively.
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Figure 1: Optical functions forR56 = −0.04 m.

D x
(m

)

β

2.0

s(m)
0.0 1.0 2.0 3.0

(m
)

4.0

4.0

5.0 6.0 7.0 8.0
- 0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

12.0

10.0

8.0

6.0

Figure 2: Optical functions forR56 = 0 m.
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Figure 3: Optical functions forR56 = 0.04 m.
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