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Abstract

The geometrical optical aberrations dominate the dynamic
aperture in LHC and were therefore much studied. It turned
out however that a large second order chromaticity was ob-
served for some possible configurations of the field errors
in the dipoles. It is shown here to be explained by a mo-
mentum dependent betatron coupling excited by the skew
sextupolar component of the dipole field. This coupling is
tune dependent and increases to un-acceptable values when
the LHC working point is moved towards the diagonal at
a position which is operational in existing machines. The
numerical results are exactly predicted using canonical per-
turbation theory. This knowledge is used to design a sim-
ple and optimal correction system which consists in tilting
some focusing sextupoles in the arcs.

1 INTRODUCTION

In LHC, the dominant source of skew sextupolar perturba-
tion (a3) arises in the super-conducting dipoles. Although
a3 vanishes by design, a non-vanishing average value is
expected on each dipole production line, compatible with
the manufacturing tolerances. Its value is in the range
±0.87 × 10−4 at the reference radius Rr = 17 mm. Be-
ing of geometrical nature, a3 is constant with energy. The
installation strategy assumes that each of the 8 LHC arcs
will be equipped with dipoles from the same production
line. This a3 imperfection will therefore appear as a sys-
tematic per arc. The rms variation from magnet to magnet
is smaller than the systematic component. Its effect, further
decreased due to the very large number of dipoles (1232), is
neglected in this study. The maximum integrated strength
of a3 in one arc is comparable to that of the lattice sex-
tupoles, which correct a natural chromaticity of some 80
units. Although the consequences on the beam dynamics
are different, it can be inferred that the systematic a3 is a
significant perturbation likely to require correction.

2 CHROMATIC COUPLING

In the presence of skew sextupolar field errors K −
2 ≡

2B0/(Bρ) a3/R2
r , a particle sees a momentum-dependent

skew quadrupolar field K−
1 given by

K−
1 (s) = K−

2 (s)Dx(s) δ/(1 + δ) ∼ K−
2 (s)Dx(s) δ ,

where Dx(s) denotes the horizontal dispersion at the lo-
cation s. This perturbation excites mainly the (1,-1) reso-
nance. The first-order resonance theory (see e.g. [4]) yields
the perturbation of the fractional betatron eigentunes Q I,II :

|QI(δ) − QII(δ)| ∼
√

∆2
− + |c−|2 δ2 , (1)
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(a): Perfect machine LHC V5 (b): LHC V5, worst case for a3
Qx =63.28, Qy =59.31, Q′=2 Qx =63.28, Qy =59.31
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(c): LHC V5, worst case for a3 (d): LHC V6, worst case for a3
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Figure 1: Tunes versus energy at injection (−2 10−3 < δ <
2 10−3) for LHC Versions 5 and 6

with




∆±
def
=Qx ± Qy

c±
def
=

1

2π

∫ C

0

ds f(s) ei µ±(s)

f(s)
def
=

√
βx(s)βy(s)Dx(s)K−

2 (s)

µ±(s)
def
=µx(s)±µy(s) .

(2)

As a result, depending on |δ| � or� |∆−/c−| we observe
either a second- or first-order dependence of the eigentunes
on momentum, respectively

|QI(δ) − QII(δ)| ∼ |∆−| + 1

2
|c−|2/|∆−| δ2 , or

|QI(δ) − QII(δ)| ∼ |c−| |δ| .
(3)

For ∆− ≡ 0 (working point on the diagonal), note that the
linear chromaticity is singular around δ =0 (see Fig. 1-c).
Figure 1 shows that this perturbation is liable to produce a
negative chromaticity when changing the beam momentum
by small amounts, e.g. to measure chromaticity or disper-
sion. A head-tail instability may then be triggered. For on-
momentum beams, the tunes would be modulated at twice
the synchrotron frequency. Such a modulation is known to
enhance the diffusion of particles in a non-linear regime.

3 SECOND-ORDER CHROMATICITY

Outside the sum and difference resonances (1,±1), the
canonical perturbation theory can be used [1] to calcu-
late exactly the (on-momentum) second-order chromaticity
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due to a3:

Q′′
I,II(0)=

π

2

[
±cot

[
π∆−

]
|c−|2 − cot

[
π∆+

]
|c+|2

]
︸ ︷︷ ︸

Resonant terms

−

π [±d− − d+]︸ ︷︷ ︸
Non-resonant terms

, with

d±
def
=

1

4π2

∫ C

0

ds

∫ s

0

ds′f(s)f(s′) sin
[
µ±(s′)−µ±(s)

]
. (4)

A simple but rather faithful model of the LHC optics may
be used to calculate analytically the respective contribu-
tions of the difference and sum resonances and of the non-
resonant terms. An LHC ring is made of N = 8 arcs, each
arc containing Nc = 23 identical FODO cells of betatron
phase advances µx and µy . a3 is constant in each arc and
vanishes in the insertions which simply act as phase trom-
bones. The coefficients c± can thus be constructed from
the contribution of one single cell c

(cell)
± and from phasors

(see [1] for more details):

c±= c
(cell)
± ×sin (Nc(µx±µy )/2)

sin ((µx±µy )/2)︸ ︷︷ ︸
Form factor f± coming

from the arc

×
N∑

k=1

ei(µxk
±µyk

)(K−
2 L

)
k

︸ ︷︷ ︸
Form factor F±

(5)

where µk denotes the phase advances (hor. or vert.) at the
middle of the kth arc and (K−

2 L)k is the integrated skew
sextupolar strength per dipole in arc k. The coefficients

c
(cell)
±

def=
∫ Lc

−Lc

ds
√

βxβyDxei(µx±µy) (Lc, half-cell length)

depends only on the arc cell optics. For µx ∼ µy ∼ µ ,
their expressions become [1]:

c
(cell)
− =

α L2
c

4π

12 − sin2(µ/2)

sin3(µ/2)

c
(cell)
+ =

α L2
c

4π

12−9 sin2(µ/2)±2 sin3(µ/2)+3/5 sin4(µ/2)

sin3(µ/2)

where α is the bending angle per half-cell and the sign ±
depends whether the central quadrupole in the cell is fo-
cusing or defocusing. µx and µy being both close to 90◦

to within 5◦, the contribution of the sum resonance turns
out to be negligible compared to that of the difference res-
onance (1,-1): |c+| ∼ |c−|/Nc, assuming F− ∼ F+. In
view of Eq. 4, the ratio between these two contributions
is of the order N 2

c ∆+/∆− ∼ 104 for LHC. On the other
hand non-resonant terms d± of Eq. 4 are shown in [1] to
contribute to Q′′ at most by 1500 units.

4 APPLICATION TO LHC VERSIONS 5/6

With respect to coupling, LHC versions 5 and 6 differ
mostly by the tune split increased from 4 to 5 to maximise
the dynamic aperture. The second-order chromaticity is
found significantly reduced. The analytical model can be
used to explain this observation.
LHC exhibits a super-periodicity close to 8 in µx − µy:

[µxl−µyl ]−[µxk−µyk ] =
2π p0

8
(l − k), 1≤k≤ l≤8 , (6)

where p0 ≡ Qx − Qy is the integer tune split. Under this
condition, the module of F− takes the following form:

F(p0)
def
= |F−| =

∣∣∣∣∣
8∑

k=1

ei
2πp0k

8
(
K−

2 L
)

k

∣∣∣∣∣ , (7)

It reaches a maximum when the perturbation shows an har-
monic in phase with the arc phasor:(

K−
2 L

)
k
=

(
K−

2 L
)

max
× cos(2πp0k/8 + φ), 1≤k≤8 , (8)

where
(
K−

2 L
)
max

is the tolerance on the skew sextupolar
strength integrated per dipole (3×10−3 m−2 for LHC) and
φ an arbitrary phase, except for p0 = 0 mod 4 where φ
must be 0 or π. Using Eq.’s 7 and 8, we finally obtain{

Fmax(p0)= 8
(
K−

2 L
)

max
if p0 = 0, 4, 8, . . .

Fmax(p0)= 4
(
K−

2 L
)

max
if p0 �= 0 mod 4 .

(9)

In terms of Q′′, the strength of the resonance (1,-1) is then
expected to be reduced by a factor 4 when going from a
tune split of 4 to a tune split of 5. This is in perfect agree-
ment with the results obtained with MAD [3]:{

Q′′
max∼±56700 (MAD) / ± 58500 (analytic) for p0=4

Q′′
max∼±13000 (MAD) / ± 11100 (analytic) for p0=5 .

For LHC, the tolerance on Q′′ is 1000 units at injection [2]
and 4000 units at top energy [1], the criterion being: 1) the
control of the chromatic detuning and tune ripple induced,
2) the ability to accelerate/decelerate safely the nominal
beam to measure the tune versus energy Q(δ) or the disper-
sion on a relevant momentum range (±2 10−3 at injection,
±5 10−4 at collision) while avoiding an head-tail instabil-
ity (that is Q′(δ)>0).
The tolerance is exceeded by about a factor of 10 both at
injection and in collision, taking into account the reduced
fractional tune split in collision (.01 instead of .03). Ma-
chines tend to be operated even closer to the diagonal, e.g.
by a factor of 3 at HERA. There is thus a clear case for a
correction of the chromatic coupling in LHC.

5 DECOUPLING SCHEME

5.1 Decoupling criteria
The correction must be as local as possible to minimise si-
multaneously the resonant and non-resonant terms in Eq. 4
while requiring a minimum of correctors and power sup-
plies. Given the insignificant impact of the resonance (1,1)
before correction, we choose to cancel in each arc the cou-
pling coefficient c− without exciting the sum resonance.∫

kth

arc

ds
√

βxβyDx

(
(K−

2 )k+(K−
2 )

(cor)
k

)
ei(µx±µy) = 0, k=1..8

where (K−
2 )(cor)

k is the field distribution of the correctors in
the kth arc. By taking advantage of the fact that the phase
advances per cell are close to 90◦ in LHC, these four real
conditions can be achieved with only one family of correc-
tor per arc if the following conditions are fulfilled:
1. the corrector distribution must be symmetrical with re-
spect to the mid-arc as it is the case for the systematic part
of the error distribution. As a result, two of the four initial
conditions are automatically fulfilled.
2. the correctors must be arranged in pairs spaced by an
odd number of cells (∼ mπ+π/2 in phase) in order not to
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Case Q′′
I Q′′

II dQI/dEI dQI/dEII dQII/dEII

LHC Version 5 Perfect machine 39.6 12.3 126.9 −1644.9 451.9
Tune split worst case, no correction −56683.9 56693.5 −332.4 −1264.1 −99.5

of 4 correction −70.0 107.1 180.9 −1501.6 144.7

LHC Version 6 Perfect machine 4.9 −1.3 118.1 −1801.1 705.2
Tune split worst case, no correction −13003.9 12989.6 −103.3 −1602.9 436.7

of 5 correction −33.1 55.1 148.2 −1627.6 538.9

Table 1: Second order chromaticities and anharmonicity coefficients [m −1] induced by the systematic component a3 of
the dipoles before and after correction

excite the sum resonance (1,1).

3.
∫

kth

arc

ds
√

βxβyDx

(
(K−

2 )k+(K−
2 )

(cor)
k

)
cos(µx−µy) = 0 .

4. For the chromatic correctors not to induce geomet-
ric aberrations, each corrector must be formed of a pair
of skew sextupoles spaced by 2(2p + 1) cells (i.e. ∼
(2p+1)π in phase) and preferably placed close to focus-
ing quadrupoles (βy small) in order to minimise the driving
term of the third order resonance (0-3).

5.2 Optimal solution for LHC

QD28

Mid-arc

QD29 QD31 QD33 QD33 QF32 QD31 QF30 QD29

QF29 QD30 QF31 QF33 QF33 QD32 QF31 QD30 QF29

QF30 QF32
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RING 1/
RING 2

RING 2/
RING 1SSF SSF SSF SSF

SSF SSFSSF

QF28

SSF

Figure 2: Optimal scheme with 4 skew sextupolar corrector
per arc (horizontal chromaticity sextupoles tilted by 90◦)

The conditions 2 and 4 impose a minimum number of 4
correctors per arc. An elegant solution is obtained by tilt-
ing by 90◦ four focusing chromaticity sextupoles (SF) care-
fully chosen to satisfy the four previous criteria (Fig. 2).
While fully satisfying condition 4, this choice is further
justified as it does not decrease the safety margin of the
chromaticity correction scheme. The SF’s and SD’s are in-
deed made of the same corrector magnet. The integrated
strength of the SD’s sets the ultimate performance of the
system as the dispersion function is smaller by a factor 2 as
compared to its value at the SF’s. Moreover, for this reason,
the efficiency of the skew sextupolar correctors is also dou-
bled. Finally, due to the change of polarity from arc to arc
and from ring to ring, note that the condition 1 can be fully

respected in only 50% of the arcs. Nevertheless, insofar
as the phase advance difference per half-cell is relatively
small, this should not deteriorate the quality of the correc-
tion. This scheme was tested on the LHC Versions 5 and
6 (see Tab. 5 obtained by running the command STATIC of
MAD). The quality of the correction is excellent; the am-
plitude detuning induced after correction is negligible.
Finally, tracking studies at injection have shown that the
dynamic aperture was quite insensitive to the multipole a3

and to its correction [1]. This confirms, on the one hand,
that removing 32 chromaticity sextupoles from the lattice
does not reduce the dynamic aperture; on the other hand,
this shows that, as expected, the geometric aberrations in-
duced by the skew sextupolar correctors SSF remain in-
significant.

6 CONCLUSIONS

The second-order chromaticity observed numerically both
on the injection and collision optics of the LHC is fully
explained by the phenomenon of chromatic coupling. The
size of LHC is such that this effect becomes noticeable.
The main consequences are a reduction of the accessible
momentum range required to measure Q(δ) and the dis-
persion and a tune modulation at twice the synchrotron
frequency. These effects are amplified if the distance of
the working point to the diagonal is reduced as is often
the case in practice. Its correction requires a single family
of skew sextupoles organised in two pairs per arc to allow
an orthogonal control of chromatic coupling. An efficient
and cost-effective solution was found by tilting some chro-
maticity sextupoles rather than providing additional correc-
tors. This scheme is implemented in the latest Version 6.1
of LHC.
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