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Abstract

Magnet errors and fringe fields can significantly affect the
beam dynamics of the Spallation Neutron Source accumu-
lator ring. Using MARYLIE, we model such effects and
generate maps, and corresponding tracking data, and then
identify the impact on the beam’s non-linear dynamics. To
reduce these effects, we propose and compare several pos-
sible correction schemes for the SNS accumulator ring.

1 INTRODUCTION

The Spallation Neutron Source (SNS) ring [1] will accu-
mulate a high-intensity beam of 2.1 × 1014 protons—a
single bunch at a maximum energy of 1.3 GeV—with a
transverse emittance εx,y = 160π mm · mr (at 95 %) and
a momentum spread δp/p = ±0.7 %. A principal de-
sign constraint is the low tolerance, 10−4, set for uncon-
trolled beam loss [2]. From a beam dynamics perspec-
tive, the major effects limiting the ring’s performance are
space-charge forces and magnet field imperfections. Even
if space-charge is the dominant concern [3], it is the in-
teraction of space-charge and magnet non-linearities that
severely reduces the dynamic aperture. To provide the re-
quired acceptance, the SNS ring magnets necessarily have
large bores. As the quadrupole magnets have aspect ratios
(bore over length) of about 0.5, their fringes make a signifi-
cant contribution. Here we review some studies undertaken
to identify and correct these magnet non-linearities. Spe-
cial effort has been devoted to the quadrupoles, since their
fringe-fields and dodecapole edge errors are the dominant
magnet field imperfections in the SNS ring.

2 SEXTUPOLE EFFECTS

The most common magnet non-linearity encountered in
small rings arises from high-field sextupoles introduced for
chromaticity control. The SNS ring contains twenty chro-
matic sextupoles, placed in the arcs in high β and disper-
sion areas [4]. Their non-linear effect has been quantified
and found small. Sextupole-like contributions also come
from the leading-order fringe-field effect of the thirty-two
arc dipoles. These sextupole effects, also small, can easily
be corrected by the eight dedicated sextupole correctors.

3 OCTUPOLE-LIKE EFFECTS

The “kinematic non-linearity” refers to high-order terms
in the expansion of the classical relativistic Hamiltonian
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which contain only the transverse momenta, px and py.
This non-linearity is negligible in high-energy colliders
(e.g. RHIC, LHC), where px,y � pz; but in the the SNS
it is not so small [5]. By keeping all the kinematic terms
in the expansion of the Hamiltonian, we obtain a general
expression for the first-order tune-shift they induce:
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Twiss gamma functions. The first, usually dominant, term
in the series gives an octupole-like tune-shift, i.e. linear in
the actions. For the SNS ring, where the emittance is large
and the gamma functions in the straight sections exceed
unity, the kinematic terms give a small tune-shift of about
10−4 at 480π mm · mr, a value confirmed by both the ana-
lytical expression (1) and numerical simulations [3].

The relative impact of a longitudinal fringe field on a
particle’s transverse momentum is proportional to the ratio
of transverse emittance to magnetic length [6]. Hence, the
effect of quadrupole fringe-fields is usually small in low-
emittance, low aspect-ratio machines (e.g. RHIC, LHC)
but is very important for high-emittance, high aspect-ratio
machines such as the SNS. For a quadrupole one can eval-
uate the fringe-field contribution in the limit of zero fringe
length. The corresponding Hamiltonian for a single fringe
(to leading order) is [7, 8]

Hf =
±Q

12Bρ(1+ δp
p )

(y3py − x3px + 3x2ypy − 3y2xpx),

(2)

where Qi is the quad strength, and the + and − signs are
used at, respectively, the entrance and exit of the magnet. It
follows, as Lee-Whiting showed many years ago [9], that a
quadrupole fringe-field induces an octupole-like transverse
kick. Using MARYLIE [10], one can build quadrupole
maps that include fringe fields based on either (2) or an
exact representation [11]. We created tune footprints by
applying Laskar’s frequency analysis [12] to 1200 turns of
MARYLIE tracking data. Particles were launched in dif-
ferent directions out to 1000π mm · mr, and the only non-
linearities included were those caused by thick elements
and magnet fringe fields. Figure 1 shows that quadrupole
fringe fields have an important impact on the dynamics of
the SNS ring, giving tune spreads of about (0.04,0.03) at
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Figure 1: Tune footprints of the SNS ring, based on realis-
tic (blue) and hard-edge (red) quadrupole fringe fields.

1000π mm · mr, roughly one-third the space-charge tune
spread [5]. In addition, Fig. 1 shows that the hard-edge
model slightly overestimates the fringe-field effect and
therefore represents a conservative estimate.

In our case the tune spread can be accurately represented
by the results of first-order perturbation theory [7, 8]:(

δνx

δνy

)
=
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) (
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)
, (3)

where the normalized anharmonicities are given by
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Here the index i runs over the entrances and exits of all
quadrupoles in the ring, and the + and − signs are as
in (2). Note that the entrance and exit fringe fields do
not cancel one another: even if the β functions are equal
at the entrance and exit, the α functions usually change
sign, leading to an additive effect. For the SNS lattice we
find (ahh, ahv, avv) ≈ (49, 22, 42)m−1, and these values
closely match (apart from the obvious resonance) the re-
sults shown in Fig. 1.

4 OCTUPOLE CORRECTION

Octupole magnets can modify the tune-spread caused by
quadrupole fringe-fields, kinematic non-linearity, chro-
matic sextupoles, and other octupole-like effects. If oc-
tupoles are placed in non-dispersive areas, the anharmonic-
ities (4) become
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3
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2
xj ,
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(5)
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Figure 2: Top: the β functions in the first half of the SNS
straight section. Bottom: integrated strengths of three fam-
ilies of octupoles versus location of the third family.

Here Oj denotes integrated octupole strength, and the in-
dex j runs over all octupoles in the ring. Complete can-
cellation of the tune-spread requires three families of oc-
tupoles to drive the anharmonicities (5) to zero. In some
cases, when one anharmonicity is much smaller than the
others, two families of octupoles can reduce the tune-
spread. This is not the case for the SNS ring, where a third
family must be added to the two already present.

The octupole strengths required to drive the anharmonic-
ities (5) to zero depend on the octupole locations. Figure 2
shows the integrated strengths of the octupole correctors
versus the position of the third family in one of the SNS
ring straight sections. The first two families, at the ends of
each arc, are located where βx and βy take extremal values.
Then the optimal position for the third corrector is where
the β functions are roughly equal, i.e. either in the middle
of the straight section or just after the doublet.

5 DODECAPOLE ERRORS

In a magnet with normal quadrupole symmetry the first al-
lowed multipole error is the normal dodecapole, b 6. In
the absence of pole-tip shaping, this error can be exceed-
ingly large: for the SNS 21 cm quadrupole (see Fig. 3), an
OPERA-3d [13] simulation (with un-shaped ends) gives a
dodecapole component of about 120 (in units of 10−4, nor-
malized with respect to the main, quadrupole, component).

Because the dodecapole error is quite localized, its ef-
fect can be computed using a thin-element approximation.
Applying first-order perturbation theory, one finds the tune-
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Figure 3: Dodecapole component in an SNS 21 cm
quadrupole with un-shaped ends. The reference radius is
10 cm, and the origin, z = 0, is at the magnet’s center.
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Figure 4: Tune footprints of the SNS ring with a dode-
capole error in the quadrupoles of b6 = 60 units; results
are from tracking data (blue) or the analytic result (6) (red).

spread induced by dodecapole errors is given by
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where Di denotes the 3 × 2 matrix
(

β3
xi −6β2

xiβyi 3βxiβ
2
yi

−3β2
xiβyi 6βxiβ

2
yi −β3

yi

)
. (6b)

Here the index i runs over all dodecapole kicks in the ring,
i.e. over the entrances and exits of all quadrupoles. Note
that this effect depends linearly on the error strength, but
quadratically on the ammplitude. In Fig. 4 a compari-
son of this analytic result with MARYLIE tracking data1

shows a striking agreement. Figure 4 also shows that
the very large uncorrected dodecapole error gives a tune-
spread (at 1000π mm · mr) roughly twice that caused by
the quadrupole fringe fields.

By shaping the ends of the quadrupoles, one can reduce
the b6 error to 1 unit or less [14]. Such shaping reduces
the peak and the trough seen in Fig. 3, and makes those
two areas roughly cancel one another. This constitutes lo-
cal compensation. One might also correct the b6 error by
adding a small negative dodecapole component through the
body of the magnet. In Fig. 5 we compare the tune-spreads

1The dodecapole kicks were generated by a MARYLIE user routine.
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Figure 5: Comparison of tune-shift plots using body (red)
and local (blue) compensation of the dodecapole compo-
nent in the SNS ring quadrupoles.

(6) after local and body compensation. In this example, the
compensation works well in both cases, with local com-
pensation being slightly better. But, in fact, it is essential
to use local compensation: because the tune-spreads (6)
depend cubically on the β functions, the results of body
compensation will be very sensitive to the ring optics.
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