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X
Abstract ring Ap
At low electron-ion relative velocities the cooling rates due  outward
to the electron cooling force differ by a factor 4f 8 [1]. R
By dispersive electron cooling, it is possible to transfer lon- v v
S

gitudinal cooling rate into horizontal cooling rate. In this
scheme, a horizontal gradient in the longitudinal cooling .

force leads to a cooling or heating rate due to dispersive inward CA /
coupling. This gradient can be achieved by displacing the b/ P
electron beam with respect to the ion beam, exploiting the

parabolic velocity profile of the electrons because of th&igure 1: Principle of dispersive cooling. A positive
space charge. Operating the TSR with a somehow highehange in the longitudinal momentutxp |, transfered to
dispersionDs = 1.63 m in the interaction region, longi- the ion ring outward, shifts the closed orbit towards the

tudinal cooling force and transverse cooling rates for lovouter part of the ring and therefore damps the horizontal
electron-ion relative velocities were measured in agreemepetatron oscillation.

with a simple model, taking into account the electron den-
sity and dispersion.

ring

1 PRINCIPLE OF DISPERSIVE vg is the velocity on the axis of the beam in the labo-
ratory frame,n. is the electron densityn. the electron
ELECTRON COOLING

mass andvp = e?n./(4egmevp). lons, which find them-
The principle of dispersive cooling is shown in figure 1. A
change in the longitudinal momentum of a stored iom, A \Y4
leads to a horizontal displacement of the closed orbit due
to dispersion:

(1) <V6(X)>7VO

po is the longitudinal momentum of the ion in the labora- / ion beam

tory frame, the proportionality factdp s is called the dis- vV —V

persion. A positive changfp , which is transfered to the

ion ring outward reduces the betatron amplitude and there-

fore damps the betatron oscillation. A positive momentum

change experienced ring inward excites the horizontal os- X

cillation. Assuming a horizontal gradient of the longitudi-

nal cooling force a net effect of this process arises [2]:  Figure 2: Parabolic velocity profile of the electrons due to
1 d D dF the space charge. By displacing the electron beam with
L ——Snc il | (2) respectto the ion beam, a horizontal gradient of the longi-
€z dt po  dx tudinal cooling force arises.

€ 1S the horizontal emittance, the average longitudinal

momentum of the ion beam in the laboratory frame apd

=1.2m/55.4m is the fraction between the interaction lengtRelves closer to the outer part of the ring (on the “right”
and the circumference of the TSR. A horizontal gradient ofide respectively, compare figure 2) interact with faster
the longitudinal cooling force is achieved by displacing theelectrons and are accelerated. lons, which are closer to-
electron beam with respect to the ion beam because of tHgrds the inner part of the ring, interact with slower elec-
parabolic velocity profile of the electrons due to the spacons and are therefore decelerated. By this means a hor-

charge, as shown in figure 2: izontal gradient of the longitudinal cooling force arises
dF/dr =~ o) - 2apzx, Whereq is the longitudinal fric-
(Ve (r)) = v + apr? (3) tion coefficienta = —dF) /dv |y, —o -
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2 EXPERIMENTAL PROCEDURE 3.6975

In order to study dispersive electron cooling, the electron
beam is horizontally displaced with respect to the ion beam.  3-:6970 -
A horizontal (vertical) displacemed¥ (V') of the electron
beam leads to a higher ion beam velocity and therefore to &
an additional displacementy due to dispersionX > 0 =
should mean displacing the electron beam towards the in-*
ner part of the ring). The change in the revolution fre-
quency is given by:

3.6965 -

3.6960 -

Af _ 77% @) 3.6955
fo 0 ~500 0 500 1000
S2X [bits]

n = 0.89 for the standard mode of the TSR. Using equa- _ _ _
tions (1), (3) and (4) ,the change in the revolution frequenciigure 3: Sixth harmonic of the revolution frequency as
due to a horizontalX) or a vertical displacement() is  function of the applied steerer strength for a horizontal dis-

then given by: placement. The solid curve is a function according to (5),
yieldingcx = —1.29 - 10~2 mm/bit as fit parameter. The
Jo dashed curve is a parabola only taking into account the
Af(X) = n=—-{C—-X—-vC2-2CX; (5
F(X) UDS { } ®) space charge of the electron beam and neglecting disper-

Af(Y) = f—(;-{C—\/CQ—Y?} 6 o

C =wvy/(2apDg). AsC > X andC > Y, developping

the roots in (5) and (6) yields: (vertically) acquires reoptimizing the vertical (horizontal)
angle of the electron beam.
N Qap .9 X Rotating the standard lattice of the TSR about an angle
AfX) ~ nfOEX Aths 5) () 6 90° in the horizontal plane, a value dfs = 1.63 m is
aD o 172 achieved in the cooling region, comparedig = 0.3 m
AfY) = nfo EY (-7 m) (8)  for the standard mode.

The electron beam is displaced in the horizontal direc-
tion by using the steerer S2X. The bit values are propor- 3 COOLING FORCESAND COOLING

tional to the displacement: RATES

, For low relative electron-ion velocities the longitudinal
X = cx - 52X[bits] + dx ©) cooling force is measured directly with the aid of an induc-
Therefore it is possible to calibrate the displacemerfion accelerator [3]. From this measurement the longitudi-
by recording the revolution frequency as function of thenal friction coefficienty) = —dFj /dv |, =0 is evaluated.
steerer strength. The measurements were performed usingStudying the cooling process of ion beams having small
a'2Cf* beam at an energy of 73.3 MeV. The parameter#itial diameters, i.e. low transverse velocities in the cool-
for the electron cooler setup were chosen as the followingdg region, with the aid of the beam profile monitor [4], it
ne = 8.0-10% cm™3, B, =418 Gauss, 9.6 times ex- is possible to measure the transverse cooling rbtes .,
panded electron beam. The revolution frequency as fungvhich are related to the transverse friction coefficients
tion of a horizontal displacement is shown in figure 3. Adzy = mi/n. - 2/72 4 [1]. m; is the ion mass and the
function according to (5) is drawn as solid curve, yieldingfactor 2 results from betatron oscillations.
cx = —1.29- 1072 mm/bit as fit parameter. Displacing the electron beam in the vertical direction,
A parabolic function is drawn as dashed curve only takthe longitudinal friction coefficient and the transverse cool-
ing into account the space charge of the electron beam aim rates are found to be independent of the vertical dis-
neglecting the additional displacemen. placement, as expected, since there is dispersion only for
The revolution frequency as function of a vertical dis-the horizontal degree of freedom. They amounttp =
placement” also allows the calibration of the displacment6.57 - 10~% eVs/m? and1/7, = 23-1/s,1/7, = 25-1/s.
and shows no significant deviation from a parabola, as ex- A different situation occurs, displacing the electron
pected. beam horizontally. The longitudinal cooling force on an
Starting from well aligned and centered beams the coion moving withv; in the laboratory frame is given within
lective rotation of the electron beam due to space chardke linear regime of the force by:
and the longitudinal magnetic guiding field has to be taken
into account. Displacing the electron beam horizontally Fy(vi;2) = = (v — (ve(z + Azp))) (10)
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r = X + zp denotes the horizontal distance between the
closed orbit of the ion and the center of the electron beam,
Axp is the additional horizontal displacment due to dis-
persionAxp = Dgv)/(ve(z)); v = vy — (ve(z)). Ne-
glecting terms of the order akz p? one finds:

F” (’U” ; CC) = —a”*(:c) . ’U” (11)

with D
apDg
@) ) (12)

vo () denotes the velocity, where the electron cooling force
vanishesyg(z) = (ve(x)).

The measured longitudinal friction coefficients are
shown in figure 4 as squares. A dashed curve is drawn ac-

Oé”*(m) =q)- (1-2
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cording to (12), fory | the mean value af.6-10~* eVs/n¥
for the two measurements at= 0 is taken. The experi-
mental data are in good agreement with (12).
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Figure 4. Measured longitudinal friction coefficient as

function of z (filled squares). A function according to (12)

is drawn as dashed curve, being chosen as the mean

value of the two measurements with= 0.

The transverse cooling rates as functioncadre shown

Figure 5: Transverse cooling rates as functior.ofo the
vertical rates a constant function is fitted (dashed line), to
the horizontal rates a functidy7,,(z = 0) + 1/7 qisp IS
drawn (solid line). The fitted offset amountstgr, (z =

0) = 22- 1/s andl /7, 4isp according to (13).

4 SUM OF THE FRICTION
COEFFICIENTS

Using (12) and (13) the sum of the friction coeffi-
cients can be evaluated analytically. Using(xz) =
2m;i/n.(1/1(x = 0) + 1/73 disp) @Nd oy(x) = oy =
2m;/n. - 1/1, one finds:

Z ai(z) = a| + az(z = 0) + ay = const (14)

The sum of the friction coefficients is constant, indepen-
dent ofz. Therefore, in the regime of low relative veloci-

ties, it is possible to transfer longitudinal cooling rate into
horizontal rate. As the transverse friction coefficients are
a factor of 2-4 smaller than the longitudinal one (for ions
with charge states Z=1 to Z=8) [1], by dispersive electron
cooling it should be possible to create a horizontal cooling

in figure 5. The vertical rates are found to be independerifite which can be compared to the longitudinal one.

of x, amounting td /,, = 23.5- 1/s (dashed line). The hor-

izontal cooling rates are drawn as squares. They increase

for positivex and decrease for negative Taking into ac-

count, that the cooling rate is related to the rms beam widt

o, equation (2) is rewritten:
OéDDS
Po

The gradientl ) /dx has been approximated by /dx =
d/dx[—a)*(z) (vi) — (ve(@))] = o - d/dx{ve(x)) = o -
2apx.

Afunctionl/7, = 1/7,(x = 0) + 1/74 aisp IS drawn as

1/T:c,disp = Nec Oé” - T (13)

solid line, describing the horizontal cooling rates very well. [4]

The offsetl /7, (z = 0) was fitted to the data, amounting
to 1/7,(x = 0) = 22- 1/s andl/7y 4;sp Was calculated
according to the experimental values with (13).
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