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1 INTRODUCTION 
 

Inclusion of resonant particles leads to many 
interesting and important results. In [1] resonant particles 
bring about ordering of the fields of oscillations in the 
"lattice" of wave packets in the coordinate-phase velocity  
(x, Vph )  space. Elsewhere [2] it has been shown that 
trapped particles can substantially renormalize the strength 
of three-wave interaction. Reflection of trapped resonant 
electrons  from a localised potential perturbation in [3,4] 
causes a potential jump to form in the vicinity of 
perturbation. The presence of trapped particles also changes 
the dispersion relation of the waves [5]. The injection of 
electron beam into a plasma can give rise to a double layer 
in the beam-plasma mode and reflection of the electron 
beam from the plasma [6]. In this study we want to ascertain 
what other important nonlinear effects can be brought about 
by the presence of resonant particles in the beam-plasma 
interaction problem.  When a cold electron beam relaxes in 
a plasma, upon reaching certain amplitudes φo the excited 
wave [7] traps the beam,  forming vortices in the electron 
phase space (Fig. 1). In computer simulations [8]  with 
definite initial wave amplitudes and beam densities the 
trapped electrons are distributed near the separatrix. Such a 
distribution also formed after a long time at the plasma 
boundary when a beam is injected into the plasma [9] (Fig. 
2). This state may be unstable against the escape of a 
fraction of the electrons from the vortex with  velocities  V  
smaller than  Vph , i.e., with  V ≈ Vph - [2e(φo+φ(x))/m]1/2  
(see Fig. 1), where  φ(x)  is the electrostatic potential of the 
wave. This behaviour of a nonlinear system may be 
accompanied by an increase in  Vph  and decrease in  φo . 
The latter assumption is supported by the inversely 
proportional amplitude dependence of the nonlinear  
correction to   Vph  obtained by Fedorchenko et al. [5] for a 
beam-plasma system. Electrons escaping from the trap 
transfer energy and momentum to the wave and electrons 
trapped by the wave. In other words  we shall show that in 
the electron phase space the vortex chain is unstable against 
the escape of part of electrons from the vortex with 
velocities smaller than the vortex velocity. This process is 
not the reverse of trapping: a fraction of the electrons are 
pumped from the flight region  V > Vph to the flight region 
V < Vph ,transferring to the wave an energy  
 

∆ε ≈ (m/2)nb[Vb
2 - (Vph-Vtr)

2],   (1) 
 

which is ≈2  times that if the electrons were trapped by 
the field of the waves; here  Vtr  is the width, in  the 
electron phase space, of the resonant interaction of the 
electrons with the wave and is proportional to the 
square root of the wave amplitude. That is, a fraction of 
the electrons, having slowed down as much as possible 
in the field of the wave, escape from the trap. This 
occurs, however, only for particular functions  Vph(Vtr) 
, namely,  dVph/dVtr > 1 , dVtr/dt> 0  and dVph/dVtr < 0 , 
dVtr/dt < 0 . We shall show that the second case obtains 
in this problem, if electrons are distributed in the 
vicinity of the separatrix as a result of interaction with 
the wave. 
 

2 ELECTRON BEAM INSTABILITY 
RELATIVE TO ESCAPE FROM WAVE 

TRAP  
 
2.1 Nonrelativistic Electron Beam 
 

Let us examine the instability of a wave with a 
trapped beam, whose electrons are of mixed phases and 
are distributed near the separatrix in a certain range of 
energies. Varying the amplitude and phase velocity of 
the wave, we shall demonstrate that the  process 
develops in a self-consistent manner with  dVph/dVtr < 0 
, dVtr/dt < 0  and  dδn/dt> 0 , where  δn  is the density 
of electron beams escaping from the trapping region 
with velocities  V < Vph . 

For the purpose of describing the instability it is 
convenient to go over to action-angle variables. To do 
so we introduce the quantity  
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In the steady state and with a slow variation of 

the amplitude the particle trajectories lie on surfaces  
U=const . Clearly, the instability depends strongly on 
the  U  distribution of trapped electrons relative to the 
separatrix, which corresponds to  ±Us . If the trapped 
electrons are located deep in the potential well, there is 
a large threshold with respect to the variation of the 
amplitude and phase velocity of the wave for the 
electrons to escape from the trap. Without loss of 
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generality, we place the trapped electrons in the form of a 
plateau in the vicinity of the separatrix in a  U  strip of 
width  ∆U . 

 
 

Fig. 1. Phase portrait of electrons interacting with a 
monochromatic wave and located near the separatrix: a) all 

of the electrons are trapped by the wave; b) part of the 
electrons escaped from the trap. 

 

 
 

Fig. 2. Phase portrait of electrons interacting with a wave 
field and located near the separatrix for the case of electron 

beam injection in the plasma 
 

When in (2) we substitute the equation  ε = mV2-
2eφ(x, t)  for the trajectories of electrons in the field  φ(x, t)  
of a wave, we obtain the expressions for connection of 
energy with U. 

To study the evolution of a wave with trapped 
electrons, i.e., to study the wave instability determined 
above, using the nonlinear dispersion relation and the 
energy balance equation we find the sign and absolute value 
of  dVph/dVtr  and  δn/dVtr . 

We construct the nonlinear dispersion relation and 
the energy balance equation by using the Poisson, Vlasov 
and Maxwell equations 
 

∂2φ/∂x2 = 4πe(δne + δnb),   (3) 
-∂E/∂t = 4πj ,    (4) 
∂f/∂t + V∂f/∂x = (e/m)E∂f/∂v,  (5) 

 

where  δne  and  δnb  are the perturbations of the plasma 
and beam electron densities. Multiplying (4) by  E/4π  
and (5) by mV2  and integrating the latter over  V , 
upon equating the parts of the resulting equations 
 

E2/8π + εp + εb =Eo
2/8π + εp

o + εb
o,   (6) 

 
we obtain the energy balance equation for the wave 
field, the plasma electrons εp , and the beam electrons  
εb . 

Let us now find the approximate nonlinear 
correction to the linear dispersion relation, expanding 
the perturbation of the electron densities in powers of 
the ratio of  eφ  to the electron energy. Since for plasma 
electrons the wave excited as a result of beam-plasma 
instability evolves adiabatically, from the continuity 
equation we find an expression for the perturbation of 
the electron density:  

 
δne = ne(x) - no = no{[1 + 2eφ(x)/mVph

2]-1/2 - 1} ≈  (7) 
≈ -noeφ(x)/m Vph

2   
We also find 
 

nb(x) = ∫dVfb = ∫dU fb(dε/dU)[2m(ε + eφ)]-1/2 ,   (8) 
 
and the expression for the perturbation of electron 
beam density 
 

δnb(x) ≈ -[eφ(x)/2(2m)1/2]∫dV (fb/ε3/2)(dε/dU).    (9) 
 
Since the beam electrons are close to the separatrix, 
from (2) we find  dε/dU=2mVtr , disregarding to 
electron energy spread, 
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(10) 
where  Votr =Vtr(t=0) . Substituting (7) and (9) into (3) 
and ignoring the change in the wave shape during the 
escape of part of electrons from the trap, we obtain the 
nonlinear correction to linear dispersion relation 
 

( ) ( )∂ ∂V V n n V Vph tr b o b tr= − 2
3

    (11) 

 
The amplitude corresponding to the amplitude of beam 
trapping by the wave field  Vtr=(π/4)(Vb-Vph})  is found 
from (11) 

∂ ∂V Vph tr ≈ −3    (12) 

 
From (12) it follows that the phase velocity of wave 
depends markedly on the amplitude. 
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To determine the real evolution of the system we 
must now to find the sign of  dδn/dVtr  from (10). For this 
purpose we calculate the quantities of (6) as follows: 
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(14) 
From (13)-(14), with allowance for the smallness of  

Vtr/Vph and  ∆U/Vtr , we obtain expression for change in the 
particle and wave energies with changes by  δVtr : 
 

( )
( )

δ π ε δ

δ ε δ δ
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   (15) 

 
From (6) and (15) we obtain 

 

( )( )V n d n dVtr b trδ π≈ − 2    (16) 

 
which means that with time the amplitude of the wave 
decreases, its phase velocity increases, fraction of the 
electrons with velocities  V<Vph , i.e., with  U≈Us  escape 
from the trap. 
 
2.2 Relativistic Electron Beam 
 

One can obtain for the case of relativistic electron 
beam the expressions similar to (11), (12), (16) 
 

( ) ( )∂ ∂ γV V n n V Vph tr b o b tr b= − ≈ −2 3
3

 

( )( )
( )( ) ( )

V n d n dV

dV dV

tr b tr

ph tr

δ

π π

≈

≈ − ≈ −6 2
 (17) 

Here γb is the relativistic factor of the beam. One can see 
that the relations for both cases, for relativistic and for 
nonrelativistic beams, are closed. 
 

3 CONCLUSION 
 

In summary, we have studied the instability of a 
nonlinear wave with a trapped beam, formed as a result of 

the development of beam-plasma instability so that 
some sizeable fraction of trapped electrons is located 
close to the separatrix. It has been shown that the 
trapped electrons are unstable with escape from the trap 
with velocities less  Vph , resulting in an additional 
transfer of energy to the wave by the relaxing beam. To 
make this possible: the wave is unstable against an 
increase in phase velocity and against a concomitant 
decrease in wave amplitude. The necessary condition 
that a considerable fraction of trapped electrons are 
located close to separatrix. A similar picture of 
evolution of plasma instability was observed in the 
computer simulations of Refs. [8-9]. Jones et al. [8] 
investigated the time problem while Okuda et al. [9] 
investigated the spatial problem. The latter [8] 
demonstrated the formation of a chain of vortices in the 
electron phase space when an electron beam is injected 
into the plasma at its boundary. Jones et al. simulated 
the relaxation of a cold beam distributed in a long 
system. At fixed initial wave amplitudes and beam 
densities after vortices are formed in the electron phase 
space from beam electrons trapped by the wave, the 
vortices are unstable against the loss of electrons with 
velocities smaller than the vortex velocity. In this case 
the vortex velocity increases and its amplitude 
decreases. Similar electron beam behaviour has been 
observed at back wave excitation by beam. 
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