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Abstract 

The Eindhoven racetrack microtron (RTM) is injected 
from a 10 MeV linear accelerator on a first turn, to 
produce a 75 MeV electron beam after further 
acceleration. The matching of the linac emittance to the 
RTM acceptance is achieved in an iterative optimization 
procedure, which makes use of measurements of the beam 
shape in both transverse phase planes. The beam transport 
line from linac to RTM contains a double achromatic 
bending section and six quadrupoles for emittance 
matching. The beam shape is measured near the location 
of the accelerating cavity in the RTM. The designed feed-
back procedure is described, and results of test 
calculations are given. 

1  INTRODUCTION 
Optimum transmission of the injector linac beam to the 

racetrack microtron (RTM) of the Eindhoven University 
[1,2] requires a feedback procedure for matching the 
measured linac emittance to the RTM acceptance. The 
transverse acceptance of the RTM has been determined by 
means of a numerical simulation program, which makes 
use of the measured magnetic-field maps of the main 
bending magnets and which uses a model for the 
transverse dynamics of the microtron cavity[3]. 

For the position where the measurements of the beam 
shapes in the transverse phase planes are performed Fig. 1 
shows both the calculated acceptance of the RTM and 
approximated ellipses for the measured linac emittance, 
for ideal settings of the quadrupoles of the beam-transport 
line. One can see that the fit in the vertical plane is not 
optimal. Although small changes in the quadrupole 
settings would improve this fit, it would also make the fit 
in the horizontal direction worse simultaneously. Hence, 
the quadrupoles are set as a compromise between the 
horizontal and the vertical plane. 

Alignment and machine errors, and errors in the 
emittance measurements may cause insufficient matching. 
The emittance measurements have to be fed back to the 
beam-line quadrupoles such that the measured beam shape 
will fit the calculated acceptance of the RTM. In this 
paper the design of the feedback procedure is presented. 

The effects of errors can be counteracted by a slightly 
different choice of the beam-line quadrupole settings. 
Because the errors are unknown, their effects cannot be 
predicted and consequently the required settings for the 
beam-line quadrupoles cannot be calculated accurately 

enough beforehand. It is assumed that the Courant-Snyder 
parameters that describe the beam shape in the transverse 
phase planes can be measured within about 10 %. It has 
been chosen to use a fitting method to find the optimum 
setting for the beam-line quadrupoles. In this way the 
effects of the stochastic errors in the measurements are 
averaged out. In order to quantify the match of the 
measured and desired transverse beam shapes, an error 
function, σ, has been introduced, which expresses the 
match by a real value. This error function has been 
evaluated as a function of the beam-line quadrupole 
strengths, and a transfer-function model, describing the 
relation between quadrupole strengths and the error 
function, has been determined. The transfer-function 
model is based purely on polynomials that describe the 
effects.  

 

 
Figure1: Acceptances of the RTM, and approximated 
ellipses from linac emittance measurements. 

 

2  FEEDBACK PROCEDURE 
The principle of the feed-back procedure is that the 

error function will be evaluated experimentally for several 
slightly-different settings of the beam-line quadrupole 
strengths. The transfer-function model is fitted through 
these measured points, and accordingly the minimum 
value of the error function, together with the values for 
which this minimum is achieved, are calculated. Several 
iteration steps may be necessary to complete the 
optimization. 

2.1  Error function 

Results of measurements on the beam shape in the 
transverse phase planes are expressed in the Courant-
Snyder (CS) parameters [4]. The feed-back mechanism 
must minimize the difference between the measured CS-
parameters and the CS-parameters of the acceptance. The 
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error function that has to be minimized has been chosen 
as: 
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where the CS-parameters with and without bars are for the 
emittance and acceptance figures respectively, and where 
Cx and Cz are factors that express the relative importance 
of the horizontal and vertical phase plane. From Fig. 1 it 
can be seen that the horizontal emittance has to be 
matched more precisely to the horizontal acceptance than 
the vertical emittance to the vertical acceptance. Hence, Cx 
and Cz have been chosen as the ratio of the emittance and 

the acceptance xx εε /  and zz εε / , respectively. The 

error function only contains ‘β-terms’ and ‘γ-terms’ as α, 
β and γ are connected by the relation βγ - α2 = 1. The 
projection of the phase-plane ellipse on the y- and y'-axis 
is equal to �βε and �γε. As matching along both axes is 
equally important the ‘β-terms’ and ‘γ-terms’ are 
weighted equally.  

2.2 The transfer-function model 

The number of tuning parameters in the transport line 
has been reduced to three: for a standard triplet 
configuration, with strength u1, for one singlet with 
strength u2 and for a standard doublet configuration with  
strength u3. 

 
Figure 2: Error function for variations in u1 through u3. 
Dotted lines give third order polynomial fits. 

 
The error function σ has been evaluated for variations 

of the tuning parameters, see Fig. 2. It can be seen that 
these functions can be described by third-order 
polynomials quite well. Also all cross terms up to the third 
order have been investigated and those which appeared to 
have a negligible influence on the error function have 
been left out in order to minimize the number of model 
parameters. Consequently, the transfer-function model 
becomes: 

σ = a0 + a1u1 + a2u2 + a3u3 + a4u1
2 +a5u1u2 + a6u1u3 + 

a7u2
2  + a8u2u3 + a9u3

2 + a10u1
2u2 + a12u1u2

2 + a13u2u3
2 + 

a14u1u2u3, 
where the ai (i = 0..14) are the fit coefficients. This model 
contains 15 coefficients, so more than 15 measurements 
have to be performed in order to be able to fit the 
coefficients ai. 

The error function can be interpreted as a beam loss 
percentage, as it deals directly with overlapping phase 
space areas. In our case a loss percentage of 5 % 
corresponds to σ = 0.5. This number has been chosen as 
the criterion value for proper matching. 

 

3  TESTS OF THE OPTIMIZATION 
PROCEDURE 

The optimization procedure has been tested 
numerically. At least 15 measurements have to be 
performed in order to be able to fit the error function. 
However, it has been chosen to perform 3 measurements 
for each knob, thus ui-δu, ui, ui+δu (δu = 2 T/m), and all 
combinations. This gives 27 measurements for each 
iteration step. 

For a first test a random Gaussian error with a standard 
deviation of ∆u has been added to all three tuning 
parameters u1 through u3. The average over 300 
calculations with different errors of the needed number of 
iterations as a function of ∆u is shown in Fig. 3. 

 

 
Figure 3: Average of needed number of iteration steps (a), 
and probability on a failing control (b). 

 
If the optimisation procedure does not succeed in 100 

iteration steps, then we say that the procedure fails. The 
probability that the control fails is shown as a function of 
∆u in Fig. 3 too. Errors in all quadrupole strengths up to 
about 2 to 3 T/m can be corrected with a reasonably small 
probability on failure 5 %. A maximum in the order of 5 
to 10 iteration steps are needed. In practice, the maximum 
deviations are in the order of 0.5 T/m. Hence, the 
optimization procedure works without problems. For a 
successful simulation with ∆u = 4 T/m the values of the 
CS-parameters are shown in Fig. 4 as a function of the 
iteration step. 
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Figure 4: CS-parameters (β in [m], γ in [m-1]) as a function 
of the iteration step. 

 
A similar test has been performed for counteracting 

mechanical errors, e.g. drift length differences in the beam 
transport line, and tolerances on hardware structures. Also 
changes of the linac emittance through differences in 
settings of this machine have been considered, see Fig. 5. 
It is seen that beam shape errors up to 20% are corrected 
without problems. 

 

 
Figure 5: Average of needed number of iteration steps as a 
function of fraction ∆f by which emittance β and γ have 
been varied, and probability on a failing control. 

 

 

4  CONCLUSION 
An optimization procedure has been presented for the 

injection beamline of the Eindhoven racetrack microtron. 
An error function criterion for the quality of the match 
between the measured and the desired transverse 
emittance has been defined, and a transfer-function model 
that describes this dependence has been derived. The 
proposed optimization procedure has been tested 
numerically. Quadrupole and length errors can be 
counteracted, as well as differences in transverse beam 
shape of the input beam as delivered by the linac of up to 
several tens of percent with a reasonably small probability 
on failure of the feed-back procedure. 
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