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Abstract

The longitudinal dynamics of a charged-particle beam in
a circular accelerating machine with an arbitrary coupling
impedance is described with an integro-differential non-
linear Schr¨odinger equation. By using the Wigner trans-
form, it is shown that the above longitudinal dynamics is
governed, in phase space, by a kinetic-like equation. Re-
markably, this quantumlike approach is capable of repro-
ducing the phenomenon of Landau damping, extending in
this way previous analysis carried out within the Thermal
Wave Model.

1 INTRODUCTION

The standard theory of collective longitudinal relativistic
high-energy bunch dynamics in accelerating machines is
based on kinetic theory described by the Vlasov equation
[1, 2]. This equation is in general coupled with a set of
equations for the field produced by the bunch itself (wake-
field self-interaction) which accounts for the interaction
with the surroundings [3]. An important parameter to be
specified for this self-interaction is the coupling impedance
[3], which in general is a complex quantity. In this frame-
work, a special role is played by the phenomenon of Lan-
dau damping [4] which provides for a stabilizing effect of
the system.
Coherent instability of charged-particle beams in a circu-
lar accelerating machines has been recently described also
in a quantumlike domain [5, 6], within the context of the
Thermal Wave Model (TWM) [7]. In the above quantum-
like approaches it is assumed that the longitudinal beam
dynamics, in the case of negligible radiation emission ef-
fects, is governed by the following nonlinear Schr¨odinger
equation (NLSE):
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∂Ψ
∂s

+
ηε

2
∂2Ψ
∂x2

+ Ẑ [|Ψ|2 − |Ψ0|2
]
Ψ = 0 , (1)

where s and x are the timelike (≡ ct) and the lon-
gitudinal configurational space coordinates,Ψ(x, s) is a
complex function, called beam wave function (BWF),
whose squared modulus is the beam density,ε is the
longitudinal beam emittance,η is the slip factor, and
Ẑ is the following Hermitian linear-integral operator:
Ẑ [f(x, s)] = X f(x, s) + R ∫

f(x, s) dx . R andX
are the resistance and the reactance of the system per unity
length, respectively. In (1),Ψ0 is the BWF correspond-
ing to the equilibrium state of the system; consequently,

|Ψ|2 − |Ψ0|2 represents the density perturbation of the
beam. A standard analysis of the modulational instability
has been carried out in configuration space to describe co-
herent instability, first in the case ofX �= 0, R = 0 (purely
reactive impedance) [5], and more recently in the general
caseX �= 0, R �= 0 [6]. The first case corresponds to the
standard NLSE of the cubic form, whilst the second one
corresponds to a NLSE which includes a ”memory term”.
The main results of the above modulational instability anal-
ysis of Eq. (1) were the following: (i). the coherent insta-
bility, was interpreted as a modulational instability; (ii). no
Landau damping was predicted in configuration space.

In this paper we want to show that the quantumlike de-
scription provided by the above NLSE (1) is capable of pre-
dicting the phenomenon of Landau damping which appears
in competition with the coherent instability. This is done in
the phase-space framework associated with Eq. (1). This
transition is naturally performed by using the Wigner trans-
form of the BWFΨ(x, s). This allows us to write a sort of
von Neumann equation for the Wigner functionρw(x, p, s)
[8], p ≡ dx/ds being the conjugate momentum associated
with x.

2 KINETIC-LIKE EQUATION

We transit from configuration space to phase space by the
following Wigner-like transformρw(x, p, s) [8] :
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(2)
provided that the normalization condition ofρw over all
the phase space is assumed. Note that (2) implies that
|Ψ|2 =

∫ ∞
−∞ ρw(x, p, s) dp . Furthermore, we observe

that, if Ψ satisfies Eq. (1), thenρw satisfies the following
von Neumann-like equation:
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L̂nρw = 0 , (3)

where:

L̂n ≡ ηε
∂2n+1

∂x2n+1

{∫ ∞

−∞
Ẑ [ρw − ρ0] dp

}
∂2n+1

∂p2n+1
,

(4)
with ρ0 defined from the following relationship:
|Ψ0|2 ≡ ∫ ∞

−∞ ρ0 dp. In this scheme, the usual per-
turbative approach allows us to derive the linear dispersion
relation and to carry out a stability analysis of the system.
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3 LINEAR APPROXIMATION

Let us start from the equilibrium state:ρw = ρ0(p), and
perturb the system according to:

ρw(x, p, s) = ρ0(p) + ρ1(x, p, s) , (5)

whereρ1(x, p, s) is a first-order quantity. Consequently,
(3) and (4) can be linearized. Thus, by introducing the
Fourier transform ofρ1(x, p, s), i.e.:

ρ1(x, p, s) =
∫ ∞

−∞
dk

∫ ∞

−∞
dω ρ̃1(k, p, ω) eikx−iωs , (6)

we easily get the following dispersion relation:

1 = iZηε

∫ ∞

−∞

ρ0 (p + ηεk/2) − ρ0 (p − ηεk/2)
ηεk

dp

kp − ω
,

(7)
where we have introduced the coupling impedance as:

Z = R + i kX ≡ ZR + i ZI , (8)

whereZR andZI denote real and imaginary parts of Z, re-
spectively (note thatk plays the role of harmonic number).

4 MONOCHROMATIC COASTING
BEAM

In the limiting case of a monochromatic coasting beam, i.e.

ρ0(p) = n0δ(p) , (9)

(n0 being constant), the wavepacket reduces to a
monochromatic wavetrain. Thus, (7) becomes:

1 = − i n0
Z

k

[
1

ηεk2/2 + ω
+

1
ηεk2/2 − ω

]
, (10)

from which we can see thatω can be complex, namely we
can writeω = ωR+i ωI . Then, by using (8), and separating
(10) in its real and imaginary parts, we obtain:

ZI = − ηεn0k

4ω2
I

Z2
R +

ω2
I

ηεn0k
+

ηε2k3

4n0
. (11)

Eq. (11), for given value ofω andk, determines a con-
nection betweenZI , ZR, and the growth rateωI . In the
(ZR, ZI )-plane we have a family of symmetric parabolas
aroundZI -axis, whose concavity orientation depends on
the sign ofηε, parameterized with respect toωI , with the
following features.

For ωI → 0, the parabolas collapse into a vertical
straight line on theZI -axis given by the condition:−∞ <
ZI ≤ ηε2k3/4n0, for η > 0, andηε2k3/4n0 ≤ ZI < ∞,
for η < 0.

The above straight line represents the stability region of
the system which is enclosed by all the parabolas. This

means that all the points in the (ZR, ZI )-plane for which
ZR �= 0, represent unstable states of the system.

For smallk, the last term in (11) can be neglected, ob-
taining:

ZI = − ηεn0k

4ω2
I

Z2
R +

ω2
I

ηεn0k
. (12)

This relation shows clearly that the stability region (for
ZR = 0) corresponds to the interval ofZI satisfying the
condition:

ZI η < 0 , (13)

and, consequently, instability is obtained for

ZI η > 0 , (14)

which coincides with the well known coherent instability
condition derived in the standard theory.

We can conclude that, as in the standard description, in
the case of monochromatic coasting beam, the quantum-
like description predicts that coherent instability exists and
Landau damping does not exist.

5 COASTING BEAM WITH ARBITRARY
ρ0(P )

If the coasting beam is not monochromatic, an analysis of
dispersion relation (7) can be carried out by considering the
limit of small k, but keepingηε finite andω arbitrary. This
corresponds to assuming that|η|εk << 1.

First of all, we observe that, since|η|εk << 1, we have:

ρ0 (p + ηεk/2) − ρ0 (p − ηεk/2)
ηεk

≈ dρ0/dp ≡ ρ
′
0 .

(15)
Consequently, Eq. (7) becomes:

1 = iηεZ(k, ω)
∫ ∞

−∞

ρ
′
0

kp − ω
dp . (16)

Eq. (16) is identical to the linear dispersion relation that
in the standard theory, and the limit of small wavenumbers
considered above allows us to predict a sort of weak Lan-
dau damping, as described in the standard theory, as well.
In fact, the dispersion relation (16) can be cast as:

VR + i VI = −
[
i

∫
PV

ρ
′
0

p − βph
dp + π ρ

′
0(βph)

]−1

,

(17)
where

VR + i VI = ηε

(
ZR

k
+ i

ZI

k

)
, (18)
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and
∫

PV (...)dp accounts for the principal value. This equa-
tion determines a relationship betweenVR, VI , andβph. In
principle,βph is a complex quantity. Thus, we put:

βph ≡ γR + i γI . (19)

Consequently, curves in theVR-VI plane for different
growth ratesγI can be plotted. It is clear from (17) and
(18) that they agree with the ones given in the standard
theory [1]. We would like to stress that these plots would
represent a sort of universal stability chart predicted by the
present quantumlike theory.

6 CONCLUSIONS AND PERSPECTIVES

In this paper a quantumlike approach in phase space has
been used to describe the nonlinear collective longitu-
dinal dynamics of a coasting beam in a circular accel-
erating machine. Within the framework of TWM, this
dynamics is governed by a nonlinear integro–differential
Schrödinger–like equation. By means of the Wigner trans-
form, a kinetic–like equation, similar to the one based on
the Vlasov equation, has been obtained. With a pertur-
bative approach we have recovered coherent instability as
well as predicted the phenomenon of the Landau damp-
ing, in a way fully similar to the one usually predicted
by the conventional theory of accelerator physics [1, 2].
Physically, this result is due to the stabilizing role of Lan-
dau damping which competes with the coherent instability.
This result improves the ones obtained in previuos works,
in which coherent instability was recovered but Landau
damping was not predicted [5, 6].
In conclusion, the very well known charts of coherent insta-
bility, including the stabilizing effect of Landau damping
[1] are successfully recovered by the present quantum-like
approach.
In perspective, on the basis of the present analysis, a pos-
sible development of the results given in this paper should
be done to prove that Landau damping is predictable also
in configuration space. In fact, the configuration space de-
scription provided by Eq. (1) is fully equivalent to the one
provided by von Neumann equation (3), according to the
well known properties of the Wigner transform (2). Con-
sequently, all the information contained in the phase-space
distributionρw are also contained inΨ. We must conclude
that, in the quantum-like domain, the phenomenon of Lan-
dau damping must be predicted not only in phase space
but also in configuration space. On the basis of this state-
ment, it seems clear that the difficulty met in predicting it
in configuration space lies in the method used to analyze
the modulational instability. It seems that the right way to
predict the phenomenon of Landau damping also in con-
figuration space may be solving a suitable inhomogeneous
eigenvalue problem to carry out the instability property of
a small perturbation of a non-homogeneous background.
Such an investigation of is now in progress and considered
by the authors to be discussed in a future work.
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