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Abstract

Two axisymmetric, transverse models of space-charge
compensation are proposed in order to compute the self-
consistent potential of a proton beam and of the plasma
generated by the beam when it evolves in a residual gas
and ionises its molecules. The first model consists in a sta-
tionary hydrodynamic description. The limitation of this
model is shown in an experimental case where electrons
are not thermalized. A kinetic model which computes the
build up of space-charge compensation towards a station-
ary state is presented. Its numerical resolution is based on
an explicit PIC method. Tests of this model on the same ex-
perimental case are shown and compared to measurements.

1 INTRODUCTION

Space charge compensation occurs in the low energy part
of ions accelerators, where some residual gas remains at
a density which can be much higher than the beam den-
sity. Electrons and residual gas ions are produced from
collisions between the beam ions and the residual gas
molecules. When the beam pulse is continuous, the pro-
duction rate of electrons and residual gas ions is constant
and writes :

∂nα

∂t
= σingnbvb =

nb

τi
(1)

whereα = e or α = i, ne andni denoting respectively
electrons and residual gas ions density,ng is the residual
gas density,nb is the beam ions density,vb is the velocity of
beam ions,σi is the cross section of the ionisation process,
andτi is a characteristic time defined by this relation.

At the beginning of the process of particle produc-
tion, the self-consistant electric potential of the medium is
mainly due to the beam space charge, therefore the resid-
ual gas ions are expelled radially out of the beam while the
electrons oscillate inside. If we assume that this dynamic
goes on as long as ionization lasts, there will be as much
electrons as beam ions within the beam afterτi, which then
represents the characteristic time of the phenomenon.

For long-pulsed, positive ion beams, time-resolved mea-
surements have shown in different situations that space-
charge compensation evolves towards a stationary state
where the beam is partially compensated [1], [2].

To be able to describe the transport of a continuous com-
pensated beam, one need first to have a precise knowledge
of the transverse self-consistent electric field, or equiva-
lently, of the electric potential, that we denoteφ(r) (r is
the radial coordinate), once a stationary state is reached.

To compute this potential, we present in this paper two dif-
ferent models : one is based on a hydrodynamic description
and the other uses kinetic equations. These are transverse
models, where we assume that the beam is an infinite cylin-
der of radiusa confined in a tube of radiusR.

The case of SILHI

SILHI is the ECR High Intensity Light Ion Source stud-
ied in CEA-Saclay, France. It delivers a 95 keV, 100 mA
proton beam which is transported in a Low Energy Beam
Transport line (LEBT), where the residual gas,H2, is at a
pressure of around5× 10−5 hPa. The models presented in
this paper are used in the situation of SILHI’s beam.

Within the frame of a collaboration between SEA at
CEA-Saclay, SP2A at CEA-Bruy`eres and the Institut f¨ur
Angewandte Physik in Frankfurt, time-resolved measure-
ments of space-charge compensation, related in [1], have
been made at the end of the LEBT thanks to a residual gas
ion analyser. The potentialφ decreases with respect tor
inside the beam, this enables the residual gas ions to es-
cape. The ions produced on the axis are then collected with
a maximum kinetic energyEmax, while the ions coming
from the edge of the beam have a minimum energyEmin.
From the measurements, one can get the potential drop in
the beam and the total potential drop :

eδφ(a) := e(φ(0) − φ(a)) = Emax − Emin , (2)

eδφ(R) := e(φ(0) − φ(R)) = Emax . (3)

In a situation of a 92 keV, 61 mA beam, with radiusa = 10
mm, whithR = 135 mm, and for a gas pressureP =
3.8×10−5 hPa, the measurements gaveδφ(a) ≈ 16 V, and
δφ(R) ≈ 48 V [1]. In the sequel, we take advantage of
these values to fit and to test the models.

2 HYDRODYNAMIC MODEL

We describe the residual gas ions as a cold transverse beam,
i.e. we neglect their velocity dispersion. This dispersion is
very small compared to the average velocity of ions when
the potential is flat inside the beam. The densityni and
the velocityui of ions are then solution of the system of
conservation laws:
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with the symmetry conditionui(0) = 0.
We assume that the electrons are at thermodynamic equi-

librium in the potential well, their density is then given by
the Maxwell-Boltzmann distribution :

ne = ne0 exp
(
eφ

kTe

)
, (5)

for a given electron density on axisne0, and a given tem-
peraturekTe.

Finally, the potential is solution of Poisson equation :

−1
r

∂

∂r

(
r
∂φ

∂r

)
=
e

ε0
(nb + ni − ne) . (6)

with the condition ∂φ
∂r (0) = 0, which comes from the

fact that we look for bounded particle densities, and with
φ(R) = 0, which means that the tube is equipotential.

In the theoretical case where the beam is a slab evolv-
ing between two infinite grounded plates, one can derive a
similar model where the different quantities depends on a
cartesian transverse coordinatex. A numerical method to
compute the solution of this model has been proposed in
[3]. This method can also be used to solve the axisymmet-
ric model (4) – (6).

2.1 An example of the potential of a space-
charge compensated beam

The model derived hereabove approaches another model
used to describe space-charge compensation, for instance
in [4], where the dispersion of the residual gas ions veloc-
ity is not neglected. The simplification that we have made
here, by treating ions as a cold transverse beam, allows
easier computations, since no iteration method is required.
Nevertheless, the assumption made restricts the field of ap-
plication of this model, and before using it, we had to check
that it could give reasonable results in cases tested with the
model used in [4].

In this latter article, the authors present several diagnos-
tics performed on a 10 keV, 143µA H+

e beam, evolving in
Helium at a pressure of6.9× 10−5 hPa; the beam radius is
a = 5 mm and the radius of the tube isR = 50 mm. The
two parametersne0 andkTe have been estimated in such a
way that the numerical solution fits to the results of the di-
agnostics. In this case, it was found thatne0 = 1.3×nb(0)
and kTe = 0.1 eV give a good fitting. Here, we have
solved numerically the hydrodynamic model (4) – (6) with
these parameters. The result is presented on Figure 1 and
approximates correctly the potential computed in [4]

2.2 Application to SILHI

We present here an attempt to use the hydrodynamic model
in order to compute the potential in the experimental situa-
tion described in Section 1. We used the results of measure-
ments (2) and (3) as two constraints to determine the pa-
rametersne0 andkTe. Two plots of the set of parameters al-
lowing to fit each constraint are presented on Figure 2. The
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Figure 1: Potential solution of the hydrodynamic modelin

the case studied in [4].
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Figure 2: Set of parameters(ne0, kTe) for which the po-
tential checks (2) or (3).

domain of investigation was :0.5nb(0) ≤ ne0 ≤ 1.5nb(0),
1 eV ≤ kTe ≤ 24 eV . The beam profile was considered as
uniform. Although the error margins choosen are large (the
required tolerance is30 % for each constraint) no couple of
parameters could fulfill the two constraints simultaneously.

In fact the assumption of thermodynamical equilibrium
is questionable in the case of SILHI. Let us precise this
point. Firstly, using the ionization cross section value,
σi = 2.4 × 10−20 m2, one can getτi � 10 µs. Secondly,
when they are produced by ionisation, electrons have an
average initial kinetic energy of10 eV , and most of them
are trapped in the potential well whose depth is about50 V .
Hence, the electron temperature amounts roughly to10 eV
and could not be lower than1 eV , despite the lost of highly
energetic electrons. The time of thermalization for such
electrons is longer than100 µs [3], and thus could not be
compared to the time scale of compensationτ i.

3 KINETIC MODEL

The model used in this section was presented in [5]. Elec-
trons and ions are described with their distribution function
in phase space,fe(t, r,v) andfi(t, r,v), wherer is the 2D
transverse position in the tube andv is the 2D transverse
velocity. The evolution of the distribution functions can
be described with Vlasov equation, using a source term to
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modelize ionisation [3] :

∂fe

∂t
+ v · ∇rfe +

e

me
∇φ · ∇vfe =

nb

τi
Se(v) ,(7)

∂fi

∂t
+ v · ∇rfi − e

mi
∇φ · ∇vfi =

nb

τi
Si(v) , (8)

−∆φ =
e

ε0

(
nb +

∫
fidv −

∫
fev

)
, (9)

Se andSi are the probability densities of the initial veloc-
ities of electrons and ions (once they have just been pro-
duced). As a matter of fact,Si is the velocity distribution
of gas molecules.
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Figure 3: The steady state is nearly reached att = 3 τi,
time after which the evolution is neglectible.

0 40 80 120
r (mm)

0.0

0.2

0.4

0.6

0.8

1.0

n α 
/ n

b0

particle densities

ne

ni

nb

0 40 80 120
r (mm)

0

10

20

30

T
e 

(e
V

)

electronic temperature (eV)

Figure 4: Electron density and temperature at equilibrium.
This model shows a varying temperature profile.

It was proven (see [3]), in both plane symmetric and ax-
isymmetric case, that this model does not admit any station-
ary solution whenSe(v) > 0 , for |v| < vc, wherevc > 0.
Indeed, in this case, electrons emitted with a low kinetic
energy accumulate inside the beam. In fact, some mecan-
isms which are not taken into account transfer energy to
electrons allowing them to escape. These mecanisms have
not been clearly identified. It is possible that they are due
to the longitudinal electric field, created by the beam diver-
gence : such a field accelerate electrons, enabling them to
escape longitudinally [3].

In the present description, we modelize the effects of
these mecanisms by assuming that the electrons are cre-
ated with a minimum kinetic energyEg. This energy does
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Figure 5: Comparison between a computed and an experi-
mental spectrum at the wall. The spread in ions energyis

reproduced by the model, but the shape of the experimental
spectrum indicates that the potential profile is different.

not exist in reality, since the real distributionSe is max-
imum atv = 0. Nevertheless, this description allows to
reproduce the evolution of space-charge compensation to-
wards a stationary state. We have simulated this process,
by solving this model with an explicit PIC method, using
a Boris algorithm to integrate the particles motion in cylin-
drical geometry. The results of the simulation are presented
on Figure 3, 4, 5, att = 5 τi, when a stationary state has
been reached. The energyEg is a free parameter which has
to be fixed asEg = eδφ(R). Indeed, the system stops its
evolution once all the emitted electrons have enough energy
to overcome the potential barrier towards the tube wall.

4 CONCLUSION

A kinetic model of space-charge compensation based on
Vlasov-Poisson system allows to compute the density and
the temperature of electrons trapped in the potential well,
which neutralise the beam space-charge. It requires the
estimation of the total potential drop, which can be di-
rectly measured. It can replace a classical stationary model
when the electrons cannot be described with the Maxwell-
Boltzmann distribution.
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