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Abstract

The problem of phase space diagram construction for
non-linear betatron oscillation measured by pickup, is
considered. The conventional two-pickup method [1] of
phase trajectory construction was improved. Discrete
Fourier filter applied to data measured yields a large
dividend in accuracy. The result of our investigations is
the method of turn-by-turn phase trajectory construction
using data measured by single pickup. The single-pickup
method developed was tested by computer simulation of
non-linear betatron oscillation in several models of
magnet lattice. Practicality of the method and its accuracy
limitation were studied. The method applying for
experimental study of beam dynamic is discussed.

1  INTRODUCTION
Phase space diagram of non-linear betatron oscillation

gives a lot of information about the non-linearity type,
non-linear resonances, dynamic aperture, etc. It is useful
to compare phase trajectories of the beam motion
measured with results of analytical estimations and
numerical simulations.

A problem of phase trajectory construction is obtaining
x’(x) dependence, where x(t) is transverse coordinate, and
x’(t) is transverse momentum of a beam centre of charge,
t is a time variable. The problem is troublesome because
of impossibility to measure directly the momentum x’(t).

Diagnostic systems give an information about beam
motion as series of turn-by-turn samples xk of the
coordinate measured by pickup. Due to the discreteness,
calculation of the momentum samples x’k, by numerical
differentiation of the xk, is impossible in general.

Let’s consider a problem of construction of turn-by-turn
phase trajectory x'k(xk) of non-linear betatron oscillation
using the coordinate samples xk.

It is convenient to analyse phase trajectories in the
(x, x') coordinates defined by the variables conversion:

x' = αx + βx'. (1)
A shape of phase trajectory in these coordinates is
independent of the value of alpha-function α = −β'/2, but
this shape is determined by pure non-linear effect.

2  TWO-PICKUP METHOD
There are conventional two-pickup method [1] of turn-

by-turn phase trajectory construction. Let’s consider
particle motion in a linear section of magnet lattice with
two pickups, first of them placed at the input of the
section and second at the output of it.

If a particle passes through the section, its coordinate x2

measured by the second pickup is:
x2 = (β2/β1)

1/2·(x1 cos∆ψ21 + x'1·sin∆ψ21), (2)
here x1 is the coordinate and x'1 is the normalized
momentum at the first pickup, β1,2 are the values of beta-
function at the pickups, ∆ψ21 is the betatron phase advance
between the pickups. From this expression an equation of
turn-by-turn phase trajectory is derived:

x'1k = [(β2/β1)
1/2·x2k − x1k cos∆ψ21]/sin∆ψ21 . (3)

If β1 = β2 and ∆ψ21 = π/2+πn, then x'1k = x2k.
An accuracy of the method is determined by pickup

resolution in the frequency band with upper bound equal
to the revolution frequency. The noise error leads to poor
quality of phase trajectories constructed by this method.

For decrease the noise error, a method of discrete
Fourier filtering was developed. Let’s expand the arrays
x1k and x2k of N turn-by-turn coordinate samples in terms of
harmonics Φ1,2 j=A1,2 j+iB1,2 j of betatron frequency Q:

A1,2 j = 2/N·∑k=0

N−1x1,2 k·cos(2πk·jQ) (4)
B1,2 j = 2/N·∑k=0

N−1x1,2 k·sin(2πk·jQ)     
Amplitude of harmonics |Φ1,2 j| = (A1,2 j

2+B1,2 j

2)1/2 in (4)
decreases rapidly with the harmonic number j.

Procedure of turn-by-turn phase trajectory construction
is just the synthesis of the arrays X1k, X2k:

X1,2 k = ∑j=1

n ( A1,2 j·cos2πkjQ + B1,2 j·sin2πkjQ ) (5)
The X2k(X1k) dependence describes the phase trajectory.

Noise component of the j–th harmonic in (5) is N1/2

times lower than broad-band noise component of the x1k,
x2k arrays. If the number of harmonics in (5) n << N, then
noise reduction is (N/n)1/2. So, combination of the
expansion (4) with the synthesis (5) is a discrete filter.
Usually N = 1024, n = 4÷8, so typical noise reduction by
the filter is 10÷15 times.

An example of the filter applying to the two-pickup
method is given in Fig. 1. There are phase trajectories of
radial betatron oscillation in the VEPP-4M near the
sextupole resonance 3Qx = 26. The trajectory x2k(x1k),
constructed by the two-pickup method without filtering, is
plotted by circles, the trajectory X2k(X1k) constructed using
the filter is plotted by triangles.

 
 Figure 1: Applying of the discrete Fourier filter.
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Broad-band noise resolution of the turn-by-turn pickup
is about 100 µm, the filter decreases noise error down to
~10 µm.

3  SINGLE-PICKUP METHOD
There is a limitation of practicality of the two-pickup

method, imposed by non-linear field components of the
elements placed between the pickups. In presence of the
components, coordinate transform is not described by (2).

Thus, if a magnet lattice has no linear section with
betatron phase advance of the order of π/2, the two-pickup
method had failed. In this case the problem of phase
trajectory construction using coordinate samples measured
by single pickup, is of a special interest.

Let’s analyse a particle motion in the two utmost
models of non-linear lattice: the lattice with a uniform
distribution of non-linearity and the lattice with a single
non-linear element.

3.1  Uniformly Distributed Non-linearity

Equation of particle motion in a magnet lattice with a
uniform distribution of non-linearity is:

x'' + Ω2x = fn·x
n, (6)

here Ω2 = Kx is focusing, fn is n-th order multipole
coefficient of non-linear force.

For Ω2 = const (azimuthal symmetric field), this
equation can be solved analytically, solution has a form of
x'(x) and describes a phase trajectory of the motion. For
sextupole non-linearity (n = 2) turn-by-turn relation
between momentum x'k and coordinate xk is:

x'k = ±Ω−1·(C − xk

2 ± 2/3·Ω−2·fn·xk

3)1/2. (7)
The coefficients fn and C can be obtained by analysis of
the array xk of turn-by-turn coordinate samples.

Thus, for a magnet lattice with a uniform distribution of
non-linearity, there are turn-by-turn relations between x'k
and xk independent of non-linearity magnitude and
oscillation amplitude.

3.2  Single Non-linear Element

 Equation of particle motion in a magnet lattice with a
single non-linear element is:

x'' + Ω2x = ∑k=0

∞f(x)·δ(θ−∆θ+2πk), (8)
here Ω2 = Kx is focusing, non-linear element placed at the
∆θ azimuth is modeled by the product of non-linear
function f(x) by delta-function δ(θ−∆θ+2πk) “switching
on” non-linear force at each turn.

 This equation can be solved analytically at each turn
using Laplace transform. Turn-by-turn samples of
coordinate xk and momentum x'k are:

xk = x0cos2πkQ + βx'0·sin2πkQ −
− β·∑m=0

k−1fm·sin[2πQ(k−m)−∆ψ], (9)
x'k = −1/β·x0sin2πkQ + x'0·cos2πkQ −

− ∑m=0

k−1fm·cos[2πQ(k−m)−∆ψ], (10)
here Q is betatron frequency, ∆ψ = Q∆θ is betatron phase
advance between non-linear element and pickup.

 From the expressions (9), (10) for k-th and (k+1)-st
turns, a recurrent formula to calculate the momentum x'k+1

is derived:
x'k+1 = [xk+1·cos(2πQ−∆ψ) − xk·cos∆ψ −

− β·x'k·sin∆ψ]/βsin(2πQ−∆ψ), (11)
 It is remarkable that the non-linear force fk at each turn

can be calculated by the formula:
fk = (xkcos2πQ−xk+1+βx'k·sin2πQ)/βsin(2πQ−∆ψ), (12)
Sorting fk(xk) by increase of xk, one can approximate the
function f(x) and determine type of the non-linearity.

 Note, that the phase trajectory constructed for ∆ψ ≠ 0 is
transformed by rotation on the −∆ψ angle to the phase
trajectory constructed for ∆ψ = 0:

x'k+1 = (xk+1·cos 2πQ − xk)/βsin 2πQ, (13)
 Thus, for a magnet lattice with a single non-linear

element, there is a recurrent formula (11) to calculate the
turn-by-turn momentum x'k from the coordinate xk.

 Analysis of these two utmost cases gives promise that
for some distributions of non-linear lattice elements there
are relations between x'k and xk independent of non-
linearity magnitude and oscillation amplitude.

3.3  Amplitude-independent relations between
coordinate and momentum spectra

 As it was clarified, turn-by-turn samples of coordinate
xk and momentum x'k are related to each other. This
suggests that relations independent of non-linearity
magnitude and oscillation amplitude are valid between
coordinate Φj and momentum Φ'j spectra.

 An expansion of xk array of N samples in terms of
harmonics Φj = Aj + iBj of betatron frequency Q is:

Aj = 2/N·∑k=0

N−1xk·cos(2πk·jQ) , (14)
Bj = 2/N·∑k=0

N−1xk·sin(2πk·jQ).     
 For the model lattice with a single non-linear element,

frequency depended expressions for the relations between
momentum harmonics Φ'j = A'j + iB'j and coordinate ones
Φj = Aj + iBj are derived from the recurrent formula (11)
using the harmonic expansion (14), with neglect of the
terms of the order 1/N.
A'j = [Aj (cos2πQ−cos2πjQ) − Bj·sin2πjQ]/βsin2πQ, (15)

B'j = [Aj·sin2πjQ − Bj (cos2πQ−cos2πjQ)]/βsin2πQ,     
j = 1, 2, …, N Q ≠ 0, 0.5, 1, …

 For the lattice with uniformly distributed non-linearity,
there are simple expressions for the relations between
normalized amplitudes a'j/a'1 and phases ϕ'j of momentum
harmonics and aj/a1, ϕj of coordinate ones:

a'j/a'1 = j·aj/a1, ϕj − ϕ'j = π/2, (16)
 Note, that the amplitude-phase relations (16) are

independent of betatron frequency Q unlike the (15).
 Non-linear oscillation in several types of magnet lattice

was studied by computer simulation. One more example
of such the relations using is presented in [2]. The
amplitude-phase relations empirically obtained were used
for phase trajectory construction at LEP:

a'j/a'1 = aj/a1, ϕj − ϕ'j = π/2, (17)
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 Thus, if non-linear oscillation can be described by
equation of motion, the amplitude-phase relations can be
tabulated by analytical or numerical solution of the
equation.

 In general, amplitude-phase relations between
coordinate and momentum spectra can be obtained in one
way or another. These relations are independent of non-
linearity magnitude and oscillation amplitude and can be
use for turn-by-turn phase trajectory construction.

 4  PRACTICAL USE OF THE METHOD
 The formulas (11), (15) obtained by analysis of the

simple model lattice with a single non-linear element can
be used for study of non-linear betatron oscillation in real
accelerators. This model approximately describes a
motion in accelerator with low-order symmetry, lattice of
which has final focus. In this case sextupole chromaticity
correctors are placed close to final focus quadrupoles
where beta functions is large (at VEPP-4M — more than
10 times greater than the mean value), and these sextupole
correctors are dominated in the non-linearity.

 Practicality of the single-pickup method was tested
using computer simulation. Phase trajectories constructed
by the method were compared with results of particle
tracking in the VEPP-4M lattice with sextupoles.

 As an accuracy criterion of the method, the correlation
coefficient between the phase trajectory constructed and
the phase trajectory calculated by computer tracking, was
used. A value of the coefficient close to 1 attests that the
phase trajectories are close to one another, and the method
accuracy is rather good. It was discovered that in the
practically interesting range 8.62÷8.75 of the VEPP-4M
radial betatron frequency, the correlation coefficient is
more than 0.9.

 The single-pickup method was tested also by
comparison with the conventional two-pickup method.
Example of the phase trajectory constructed by these
methods is shown in Fig. 2. The trajectory plotted by
circles was constructed by the two-pickup method with
Fourier filtering, the trajectory plotted by triangles was
constructed by the single-pickup method.

 
 Figure 2: Two-pickup and single-pickup methods.

 The single-pickup method was used for experimental
study of non-linear beam dynamics at the VEPP-4M [3].
In Fig. 3 examples of the phase trajectories constructed by
the single-pickup method are presented. Fig. 3a illustrates
betatron oscillation of varied amplitude near the 3Qx=26
resonance, Fig. 3b and Fig. 3c demonstrates non-linear
resonances 4Qx=35 and 5Qx=43 respectively.

 
 a) b) c)

 Figure 3: Examples of phase trajectories measured.
 The single-pickup method can also be used for

construction of phase trajectory of synchrotron
oscillations. Synchrotron oscillation produces oscillation
of radial coordinate, turn-by-turn samples of which are:

xk(θ) = R·ψ(θ)·(∆E/E)k·exp[i(2πkΩ/ω0+χ)], (18)
here ψ(θ) is dispersion function, ∆E/E is an energy
deviation, proportional to time derivation of the
synchrotron phase φ:

∆E/E = 1/qω0Ks·dφ/dt. (19)
 Phase trajectory of synchrotron oscillation can be

constructed using the amplitude-phase relations:
aφ j/aφ 1 = (aE j/aE 1)·j

−1, ϕφ j − ϕE j = −π/2. (20)
 Fig. 4 shows the phase trajectory of synchrotron

oscillation constructed from data measured in comparison
with the result of computer simulation.

 
 Figure 4: Phase trajectory of synchrotron oscillation.
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