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Abstract

In this paper we will evaluate the influence of
transverse beam dimensions on the signal functions of a
beam position monitor (BPM) with capacitive pick-up
electrodes. The error which occurs in the determination of
the beam position when disregarding these effects is
calculated as an example for the DELTA1 BPM.

The possibility to use this effect for the measurement
of the beam size / emittance is discussed.

1  CALCULATION OF THE SIGNAL
FUNCTIONS

Fig.1 shows a typical BPM with 4 capacitive pick-up
electrodes. When the beam passes through the BPM, the
electric field, accompanying the beam, induces a charge
pulse on the pick-up electrode, which depends on the
beam charge and the position of the beam in the cross
section of the BPM. To determine the beam position it is
necessary  to know the signal function  Si for  each pick-
up i. These Si(x,y) represents the response of the pick-ups
for a normalised point charge (q=1) at the position (x,y).

Fig.1 Sketch of  the DELTA BPM.

In the case of relativistic beams ( γ >> 1 ) the electric
and magnetic fields are nearly transversal and therefore
the determination of the signal functions can be treated as
a 2-d problem.

                                                          
1 Dortmund ELectron Test Accelerator (1.5 GeV Synchrotron
Radiation Source)

1.1  Signal Function of a Point Charge

The obvious solution to calculate the Si is to solve for
the electric field E of a point charge (pencil beam) at
position (x,y) and to integrate E over the surface of pick-
up i to get the induced charge which is proportional to the
signal function. Because these calculations must be
repeated for each position (x,y) a more clever way is to
make use of the reciprocity theorem [1].

The potential φpick-up is allocated to pick-up i and the
Laplace equation ∆φi (x,y)=0 with the vacuum chamber
on zero potential is solved. The solution φi  is proportional
to the signal function. These calculation can easily done
by using programs like MAFIA or Poisson (see. Fig. 3).

1.2  Signal Function of a Gaussian Charge
Distribution

In most cases a good representation for the transverse
charge distribution ρ(x',y') of a particle beam at position
(x,y) is a 2-d Gaussian distribution.
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yxSi of a beam with beam size σx

and σy can be described in the following way:
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To study the effect on the determination of the beam
position usually the calculation will be done numerically.
To get a better understanding of the influence of the beam
size we will give a analytical solution.

In the following we expand, at a fixed position, the
signal function Si in a Taylor series and use a Cartesian
co-ordinate system with the origin at the centre of the
beam. This gives (after evaluating the double integral and
using identities concerning integration of Gaussian
distributions [2]) for a fixed beam centre
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where the a2i,2j are coefficients of the taylor series and
the m2i,2j can be written as
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Because the signal function S is a solution of the
Laplace equation
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we find the following relation for the coefficient ai,j
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Using equations (3) and (4) and rearranging equation
(2) leads to the following exact representation of the
signal function of a beam with Gaussian charge
distribution:
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This result shows that the variation of the signal
function with the beam size depends only on the
difference between the squares of the transverse sigmas.
A round beam especially leaves the signal function
unchanged. A polynomial fit with MAFIA calculated
values for the signal functions for different beam sizes to
σx

2-σy
2 shows, that the summands with i>1 in eq. (5) are

nearly vanishing (see. Fig. 4). It should also be mentioned
that the constant summand a0,0 in (5) is the value of the
signal function for a pencil beam.

2  POSITION ERRORS DUE TO TRANS-
VERSE GAUSSIAN CHARGE DISTRI-
BUTION OF THE PARTICLE BEAM

In most accelerator control systems the signal functions
(calculated numerically or measured on a test bench) of a
pencil beam are used to calculate the beam position from
the measured signals of the BPMs. In Fig.2 we have
calculated the position error due to disregarding the
transverse beam size in the case of DELTA, a 3rd

generation light source, as a worst case estimation for the
BPM with the biggest beam size.

To simplify the representation we have calculated the
distance between the given centre of the beam and the
calculated beam position.
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Fig.2 Absolute position error for a beam with σx=500µm
and σy=50µm.

A 3rd generation light source has an emittance in the
order of some nmrad and operates often with a emittance
coupling in the order of some %. Therefore the horizontal
beam size is in the order of 100 µm and the vertical of
10 µm. In the case of DELTA at 1.5GeV we have
maximum values of 500 µm horizontal and 50-100 µm
vertical. The resulting error is for most cases smaller than
10 µm. Therefore no influence on routine operation is
expected.

On the other hand we should keep in mind that modern
closed-orbit measuring and orbit-feedback systems have a
resolution in the order of some µm. All coherent
movements of the beam, maybe induced by instabilities,
power supply ripple or the tune measuring system, with
time constants smaller than the integration time of the
measuring system, can also be seen as a beam with
changing size, resulting in an virtual orbit drift. At
facilities with much greater beam sizes, a significant
influence can be expected because eq. 5 shows a quadratic
dependency of the σ.

3  ELECTROSTATIC EMITTANCE
MONITOR

In chapter 1 we have shown, that the signal functions
of a beam with transverse Gaussian charge distribution
depends on σx

2-σy
2. Therefore it should be possible to

extract information on the beam sizes by measuring
normalized pick-up signals for know positions of the
particle beam in comparison with the signals for pencil
beams. These reference signals must be calculated or
measured in the laboratory.

Fig.3. shows a sketch of a pick-up monitor which can
be used to determine the beam size.
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Fig.3 Simplified monitor design for an "electrostatic"
emittance monitor.

The procedure is the following: The beam must be
centred at a fixed position (how this can be done will be
described later on). Then the signals SI and SO are
measured and the current independent value
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is calculated. The deviation ∆SI

norm from the calibrated
one for the pencil beam at this position is a function of
σx

2-σy
2.
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Fig.4 Relative variation of the normalised signal ∆SI
norm

as a function of σx
2-σy

2 at a fixed beam position (x=0mm
and y=0mm)

Fig.4 shows this relative variation ∆SI
norm as a function

of σx
2-σy

2, which can also be written as
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Eq. 7 shows, that the horizontal beam size can be
calculated from one measurement if k << 1 and βx  << βy.

If it is possible to perform this measurement at 2
different monitors with well selected beta functions eq. 6
gives the possibility to calculate the horizontal and
vertical emittance independently.

As mentioned earlier it is absolutely necessary to place
the beam at a well known position during the data taking.
This can be done on 2 different ways:

1. Especially the positioning of the beam in the centre
of the BPM is possible by adding the 2 pick-ups
from Fig.3 to a monitor as shown in Fig.1 (without
the pumping channel). The determination of a
centred beam with the 4 pick-ups, which are placed
symmetrically around the centre, is possible
independent of the beam size (if the bpm is
calibrated and all transfer functions well adjusted).
Even for a beam with small offsets (<0.25mm) the
position error is smaller than 10 µm for a wide
variation of beam sizes, which turns out to be
sufficient. This method needs a very carefully
calibrated BPM, with well adjusted electronics for
position and emittance measurements.

2. By combining the 2 pick-up BPM with a
dedicated, well aligned quadrupole magnet.
Because the response of the beam to the
quadrupole field is linear, it is possible to use
methods based on beam based calibration
techniques [3][4] to centre the beam independent
of the beam sizes. This arrangement has also the
great advantage that it allow for the measurement
of the beta-functions at the same position where the
beam size is measured and gives therefore directly
the emittance. This solution needs a pick-up
monitor which is well centred on the magnetic axis
of the quadrupole and needs a absolute accuracy
concerning the positioning of the beam at the axis
of better than 10µm. At DELTA we have realised
values of < 70 µm [5] and we expect to reach
smaller values in the future.
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