A   B   C   D   E   F   G   H   I   K   L   M   O   P   Q   R   S   T   V   W    

storage-ring

Paper Title Other Keywords Page
IT05 The Comparison of signal Processing Systems for Beam Position Monitors insertion, collider, single-bunch, electron 12
 
  • G. Vismara
    CERN, Geneva, Switzerland
  At first sight the problem of determining the beam position from the ratio of the induced charges of the opposite electrodes of a beam monitor seems trivial, but up to now no unique solution has been found that fits the various demands of all particle accelerators. The purpose of this paper is to help instrumentalist in choosing the best processing system for their particular application. The paper will present the different families in which the processing systems can be grouped. A general description of the operating principles with relative advantages and disadvantages for the most employed processing systems is also presented.  
 
IT12 Use of Superimposed Alternating Currents in Quadrupoles to Measure Beam Position with Respect to their Magnetic Centre quadrupole, electron, lattice, radiation 38
 
  • N. Marks
    CLRC, Daresbury Laboratory, Warrington, UK
  The positional stability of the electron beam in a modern state-of-the-art synchrotron radiation source is critical, as the many experimental users require consistency in the position and dimensions of the incoming photon beams which are incident on their experimental samples. At the Daresbury Synchrotron Radiation Source (SRS), inaccuracies in the measurements of the positions of both beam position monitors and the lattice quadrupoles can be overcome by measuring the position of the electron beam with respect to the magnetic centres of the quadrupoles. This was achieved by superimposing an alternating ('ripple') current on the direct current excitation of a single lattice quadrupole and examining the resulting beam oscillations at remote positions in the storage ring. If the electron beam is then subjected to a local distortion at the position of this quadrupole, the amplitude of the beam oscillation induced by the superimposed current is minimised (nominally zero) when the beam is at the quadrupole's magnetic centre. This paper presents details of the electrical circuit developed to inject an alternating current into the coils of individual quadrupoles and gives details of the results achieved to date.  
 
CT07 The ELETTRA Streak Camera: System Set-Up and First Results synchrotron, electron, single-bunch, cathode 72
 
  • M. Ferianis
    ELETTRA, Sincrotrone Trieste, Trieste, Italy
  At ELETTRA, a Streak Camera system has been installed and tested. The bunch length is a significant machine parameter to measure, as it allows a direct derivation of fundamental machine characteristics, like its broadband impedance. At ELETTRA the Light from a Storage Ring Dipole is delivered through an optical system to an Optical Laboratory where it can be observed and analysed. The Streak Camera is equipped with different timebases, allowing both single sweep and dual sweep operation modes, including the Synchroscan mode. The Synchroscan frequency equal to 250 MHz, which is half of the ELETTRA RF frequency, allows the acquisition of consecutive bunches, 2ns apart. To fully exploit the performances of the Streak Camera, an optical path has been arranged which includes a fast opto-electronic shutter. By doing so, the optical power deposited on the photo-cathode is reduced in the different ELETTRA fillings.  
 
PS19 Photon counting detectors for fill structure measurements at visible wavelengths photon, single-bunch, diagnostics, electron 144
 
  • H.L. Owen
    CLRC, Daresbury Laboratory, Warrington, UK
  When making accurate measurements of the relative populations of electron bunches in a storage ring, notably in light sources operating with only a single bunch filled, the method of time-correlated single photon counting gives the greatest dynamic range. The timing resolution and background noise level of the photon detector employed is critically important in determining the overall performance of the system; hitherto the best performance has been obtained detecting X-ray photons using avalanche photodiodes. On the SRS at Daresbury a visible light diagnostic station offers greater ease of access to instrumentation and operational advantages. A review is given of the detector types which have been employed, and the performances which can be obtained using visible light.  
 
PT03 Measuring beam intensity and lifetime in BESSY II synchrotron, vacuum, injection, microtron 159
 
  • R. Bakker, R. Georgen, P. Kuske, J. Kuszynski
    BESSY, Berliner Speicherring-Gesellschaft für Synchrotronstrahlung mbH, Berlin, Germany
  The measurement of the intensity of the beam in the transfer lines and the storage ring are based on current transformers. The pulsed current in the transfer lines is measured with passive Integrating Beam Current Transformers (ICT). The bunch charge is transferred to a DC-voltage and sampled with a multifunction I/O-board of a PC. The beam current of the storage ring is measured with a high precision Parametric Current Transformer (PCT) and sampled by a high quality digital volt meter (DVM). A stand alone PC is used for synchronisation, real-time data acquisition and signal processing. Current and lifetime data are updated every second and send via CAN- bus to the BESSY II control system. All PC programs are written in LabVIEW.  
 
PT06 New digital BPM system for the Swiss light source feedback, closed-orbit, booster, alignment 168
 
  • M. Dehler, A. Jaggi, P. Pollet, T. Schilcher, V. Schlott, R. Uršič, R. deMonte
    PSI, Paul Scherrer Institut, Villigen, Switzerland
  This paper presents a new digital beam position monitor (DBPM) system which is currently under development for the Swiss Light Source (SLS). It is designed to provide sub-micron position data in normal closed orbit, and feedback mode as well as turn by turn information for machine studies and real time tune measurements. The self calibrating four channel system consists of a RF front end, a digital receiver and a DSP module. The same electronics will be used in all sections of the SLS accelerator complex. The system can be reconfigured in real time to perform different kind of measurements like: pulsed for linac and transfer lines, first turn, turn-by-turn, closed orbit, feedback and even tune mode for booster and storage ring. These reconfigurations only involve downloading of new signal processing software and will be performed via EPICS control system. An independent system for monitoring mechanical drifts of the BPM stations will be installed as well. The measured data will be permanently updated in a database and taken into account, when processing the final electron beam positions.  
 
PT19 A method for measurement of transverse impedance distribution along storage ring impedance, pick-up, betatron, vacuum 202
 
  • V. Kiselev, V. Smaluk
    BINP, Budker Institute of Nuclear Physics, Novosibirsk, Russia
  A new method for measurement of transverse couple impedance distribution along storage ring is described. The method is based on measuring of a closed orbit deviation caused by local impedance. Transverse impedance acts on the beam as a defocusing quadrupole, strength of which depends on the beam current. If a local bump of closed orbit has been created at the impedance location, then the orbit deviation occurs while varying the beam current. The local impedance can be evaluated using the orbit deviation measured. Measurement technique is described, the method accuracy is evaluated. The method described was successfully used for measurement of the impedance distribution along the VEPP-4M storage ring.