A   B   C   D   E   F   G   H   I   K   L   M   O   P   Q   R   S   T   V   W    

shielding

Paper Title Other Keywords Page
PT09 The closed-orbit measurement system for the CERN antiproton decelerator antiproton, closed-orbit, pick-up, vacuum 177
 
  • M. LeGras, L. Søby, D.J. Williams
    CERN, Geneva, Switzerland
  The closed-orbit measurement system for the new Antiproton Decelerator (AD) employs 59 electrostatic pick-ups (PU). The intensity range from 2·1010 down to 107 particles poses challenging demands on the dynamic range and noise of the head amplifier. A low noiseamplifier has been developed, having an equivalent input noise of 0.6nV/√(Hz), allowing beam positions to be measured to ±0.5 mm with 5·106 particles. Two different gains take care of the large dynamic range. After amplification and multiplexing, the PU signals are fed to a network analyser, where each measurement point corresponds to one PU. The network analyser is phase locked to the RF of the AD, thus acting as a “tracking filter” instrument. An orbit measurement takes from 0.2 to 12 s depending on the IF-bandwidth of the network analyser, selected according to the beam intensity, and the precision required. At the end of the network analyser sweep the data are read via a GPIB interface and treated by a real-time task running in a VME based Power PC.  
 
PT16 Status of the delta synchrotron light-monitoring-system synchrotron, radiation, synchrotron-radiation, emittance 196
 
  • U. Berges, K. Wille
    DELTA, Institute for Accelerator Physics and Synchrotron Radiation, University of Dortmund, Germany
  A synchrotron radiation source like DELTA needs an optical monitoring system to measure the beam size at different points of the ring with high resolution and accuracy. The measurements with the present synchrotron light monitors show that beam sizes larger than 250 μm can be measured. The measured emittance is of the order of the theoretical values of the optics and goes down to 8 nm rad. The magnification of the system can simply be increased by adding another lens to measure smaller emittances and beamsizes down to 100 μm. In this case you still have an optical image of the beam available, but sometimes the position of the camera has to be adapted due to the great magnification of the optical system. The image processing system which is based on a VME Framegrabber makes a two dimensional gaussian fit to the images from different synchrotron light-monitors. First tests with monochromatic components of the synchrotron radiation (500 nm and 550 nm) and with short time cameras (shutter time down to 1/10000 s) have been performed. A two-dimensional PSD has been installed to measure slow beam motion. To measure small beam sizes, especially in the vertical plane, diffraction elements will be used. This paper gives an overview over the present installation and the results.