PAUL SCHERRER INSTITUT

Beam Position Measurement With Sub-Micron Resolution

Boris Keil Paul Scherrer Institut

AUL SCHERRER INSTITUT

Outline

- Introduction
- Requirements & Applications
- Pickup Types & Electronics
- Summary

Introduction

IL SCHERRER INS

Topic:

Techniques & aspects of beam position measurement at 3rd & 4th generation light sources & colliders

- Focus on:
 - RF BPMs (no X-Ray, laser wire, ...)
 - Few selected aspects, designs & methods
 - Linac-based FELs
 - Differences to 3G ring machines
- Many topics equally relevant for light sources & colliders

AUL SCHERRER INSTITUT

Outline

- Introduction
- Requirements & Applications
- Pickup Types & Electronics
- Summary

BPM Requirements

Ring Light Sources

- BPM <u>requirements driven by fast orbit feedbacks</u>: want ~σ/10 photon beam stability at end of beamline
- Vertical e-beam size σ~2-5μm
- Want few 100nm BPM noise (<1kHz) / drift (seconds ...days) for orbit feedback

Linac FELs

- BPM requirements (also) driven by beam-based alignment of quadrupole magnets in undulator area
- Single-bunch FELs: typ. ~10-100Hz rep rate
 - \rightarrow Feedback only for random perturbations <1-10Hz
 - \rightarrow Machine should be inherently stable >1-10Hz
- Bunch-train FELs (E-XFEL) & ILC: few 100ns bunch spacing. Additional BPM requirements by intra-train feedbacks.

PAUL SCHERRER INSTITUT

Storage Rings: Fast Orbit Feedback (FOFB)

Typical performance of modern FOFB system:

 Motivation for lowest BPM noise & drift: are modulated back onto the beam (even amplified when frequency > cut-off)

Plots: Courtesy G. Rehm et al. (EPAC'08)

FOFB Algorithm: Impact on BPM Requirements

"Standard" Algorithm: SVD, PID Control, Uniform Gains

- SVD: rotate BPM & corrector vectors into space where beam response matrix has only diagonal elements (eigenvalues)
- Drawback: BPM vectors ("perturbation patterns") with smallest eigenvalues (huge corrector ΔI for tiny orbit Δx) mainly unreal, caused by BPM noise: vector least useful for correction of real perturbations, but main cause of feedbackinduced beam noise
- Usual cure: do not correct such BPM patterns (set small eigenvalues to 0: "eigenvalue cut-off")
- Usual problem: orbit not corrected (exactly) to desired positions

FOFB Algorithm & BPM Requirements (Cont'd)

Improvement Idea (M. Heron et al., EPAC'08, THPC118):

- Feedback will modulate much less noise onto orbit if <u>each</u> <u>BPM pattern ("eigenvector") has its own PID loop</u>, with gain weighted by eigenvalue:
 - ✓ Real perturbations: corrected fast (high loop gain)
 - ✓ Perturbations mainly pretended by BPM electronics noise: corrected slowly → noise averaged, much less feedback noise on the beam
- <u>Algorithm can reduce BPM noise requirements</u> for new 3G rings & improve beam stability at existing machines
- Needs sufficiently powerful real-time feedback computation engine (µPs, DSPs, FPGAs, or combination)

Impact of Machine Design on BPM Requirements

Impact of BPM noise reduced by:

- Minimization of quotient between largest & smallest SVD eigenvalue (conditioning number) – depends on lattice/optics & BPM/corrector locations
- Large beta functions @ BPMs

BPM electronics bunch charge & pattern dependence irrelevant by:

- Top-up injection
- Filling pattern feedback

BPM position drift of mechanics & electronics reduced/eliminated by:

- Air temperature stabilization
- Photon BPMs for orbit feedback

 \rightarrow At a well-designed machine, many BPM system specifications are not relevant for beam stability \rightarrow difficult to get funding for upgrades of older BPM systems ...

BPMs For Beam-Based Magnet Alignment

Ring Light Sources

- Local bump in quadrupole magnet: Find bump amplitude where <u>quad strength change</u> causes minimal orbit distortion
- Goal: Calibrate BPM offset, reduce coupling
- Moderate requirements on BPM resolution & drift (>>1µm)

Linac FELs

- Undulator length up to ~200m, segmented: 1 quadrupole & BPM every few meters
- SASE process: Needs <σ/10 (~3µm @ λ~0.1nm) deviation from straight e-beam trajectory over >2-3 gain lengths (~10-20m) for sufficient (~90%) electron-photon overlap
- Raubenheimer 1990: Quadrupole alignment via dispersion-free steering (e.g.: LCLS, EU-XFEL)

Quadrupole Alignment Error vs. FEL Power

Dispersion-Free Steering (DFS)

<u>Method</u>

- Beam trajectory is straight (only) if beam-energy-independent
- Measure trajectory for different energies, iterative correction of quadrupole center (e.g. via 2D mover)
- Advantage (over ballistic method, ...): accounts for all dipole fields (quad, undulator errors, earth & stray fields, ...)
- BPMs must only measure relative beam movement: initial unknown BPM & magnet offsets ~100µm (!) O.K.
 Not necessarily

Resulting BPM Requirements

• Resolution for σ ~30µm beam size (LCLS, EU-XFEL)

- typ. ~1µm if ΔE/E ~ some 10%
- typ. ~100nm if $\Delta E/E$ ~ few %

 $\sigma/300$, not $\sigma/10$: \rightarrow BPM specs driven by magnet alignment strategy (or vice versa)

single-bunch

Transverse Beam Profile

Ring Light Sources

Synchrotron radiation damping: <u>Gaussian 3D profile</u>, no bunch tilt

Linac FELs

- Machines without higher-harmonic RF: nonlinear (sine) accelerating RF fields cause <u>non-Gaussian longitudinal</u> <u>& transverse profile</u>
- Result: <u>fraction of bunch that is lasing is not at center of charge</u>
 → suboptimal (or no) lasing although BPMs show ideal straight
 undulator trajectory
- Is problem for trajectory feedback (<u>not</u> for magnet alignment!)
- Cure: Linearize RF accel. field via higher-harmonic structures
 → ~Gaussian profile → necessary for sub-µm position
 measurement of the lasing part of the bunch

Transverse Beam Profile (Cont'd)

AUL SCHERRER INSTITUT

Outline

- Introduction
- Requirements & Applications
- Pickup Types & Electronics
- Summary

PAUL SCHERRER INSTITUT							
Common Pickups Qualitative/subjective pros & cons		"Standard" BPM types for warm linac beam lines (where ~ 5 - 50μm resolution is needed)		Typical choice for SASE undulators, intra-train & IP feedbacks: sub-µm single-bunch resolution			
Standard for ring machines: SNR uncritical (averaging over many bunches), minimal beam impact	Button	Matched Stripline	Resonant Stripline, Normal Coupling	Single Cavity Normal Coupling	Two Cavities, Hybrid Coupling		
Signal/Noise	-	-/+	+	+	+		
Monopole Mode Suppression	-	-	-	-/+	+ mance		
Single-Bunch Reso- lution (@ low charge)	_	-/+	+	+	+ + perfor		
Electronics Drift	-/+	<mark>-/+</mark>	-/+	- / +	×+./		
Weight 10mm pipe	+ +	+	+	+	+		
Weight 40mm pipe	+ +	<mark>-/+</mark>	- / +	<mark>- / +</mark>	-/+ •		
Design Effort	+ +	-/+	-/+	-/+	- ndg		
Fabrication Costs	+ +	<mark>-/+</mark>	- / +	<mark>-/+</mark>	-/+ [•]		
Tuning Effort	++	++	-/+	+	+		

PAUL SCHERRER INSTITUT

Resonant Stripline Pickup

- Standard pickup for PSI XFEL test injector: needs ~10µm resolution at 10...200pC (poster: A. Citterio et al.)
- Signal/noise superior to button at 10pC. Potential for sub-µm resolution at higher bunch charge with suitable electronics (hybrid, ...)

Boris Keil

Cavity BPM Pickups

Many types & designs (\rightarrow overview talk D. Lipka). Examples:

- LCLS: 11.4 GHz. Waveguide to electronics (\rightarrow talk Stephen Smith)
- SCSS (H. Maesaka et al.): Weight- and cost-optimized design for lower frequencies. Cables to electronics. Well suited for larger beam pipe diameters (SCSS: 4.8GHz, E-XFEL: 3.3GHz).

Cavity BPM Pickups (Cont'd)

- Allow mode-selective coupling (LCLS, SCSS, ...): Position cavity waveguides / antennas couple to dipole mode, suppress large monopole mode signal
- Result: easier monopole suppression in electronics than pickups with normal couplers \rightarrow highest resolution (<< 1 µm) & low drift

SCSS type (4.8 GHz). L = 100 mm overall.

Pictures: Courtesy D. Lipka

Colliders: Current Transformer BPM

- Ceramic gap in beam pipe: wall (mirror) current flows over transformers ("segmented wall current monitor"). Current ratio used for position calculation.
- <u>ILC</u> version: 2.6µm (x) / 5.2µm (y) resolution (3.2nC, 300ns bunch spacing, 0.3–80MHz BW).
- <u>CLIC</u> version (0.67ns bunch spacing, 760pC) 180nm (x) / 350nm (y) resolution (not single bunch).

Courtesy L. Søby, DIPAC'07

Pickup Supports

- Sub-µm position resolution: want also low drift of electronics and mechanics
- Mechanical drift: ~100nm with suitable support material & temperature stability ("passive support")
- ILC IP: want ~2nm resolution
 → use "active" support

SLAC/LLNL "nm-BPM": 15.6nm resolution (cavity triplet, somewhere hidden in the support ...)

BPM Electronics

- Main challenge is fulfilling all specifications simultaneously, not just one (e.g. resolution).
- People tend to focus on low resolution (→ talk title), but e.g. low drift & bunch charge/pattern dependence are often more difficult to reach.

	Typical (3G Ring, ID BPMs)	Typical (Linac, SASE-Undulator)
Resolution / BW	200nm < 1 kHz	500nm < <mark>50MHz</mark>
Drift (hour/week) For Specified Environment	100nm/1µm	100nm/1µm
Beam Charge Dependence		100nm/1%
Bunch Pattern Dependence		n.a.
Position Range	+-5mm	+-1mm
Bunch Charge/Current Range	0.1-400mA	0.01-0.5nC
Differential Nonlinearity		0.03% FS
Integral Nonlinearity		2% FS
Bunch-to-Bunch Crosstalk	n.a.	100nm
x-y Coupling	2%	1%
Initial Offset & Gain Error	100µm / 3%	100µm / 3%

AUL SCHERRER INSTITUT

Outline

- Introduction
- Requirements & Applications
- Pickup Types & Electronics
- Summary

Summary

- Beam position measurement is not just pickup & electronics technology, but an overall concept involving machine design & operation.
- The design of magnet lattice & optics, RF & air conditioning systems, choice of beam-based alignment techniques & orbit correction algorithms as well as the bunch charge and its temporal variation strongly affect the required BPM performance.
- Kennedy (slightly misquoted): Don't (just) ask what the BPM system can do for your machine, but (also) what your machine can do for the BPM system.

Thank you for your attention!