

Proton Synchrotron 26 GeV 200 m diameter 40 ES BPMs Built in 1959

Trajectory measurement:

- System architecture
- Inputs
- Principles of operation
- Measurement examples

System architecture

For one PU station:

System architecture

- 14 PU Processing Engines
- Treating 3 PUs each
- 3 half-width cPCI crates
- One system controller

The cPCI crate processors are connected to the system controller using Gigabit Ethernet. The system controller connects to the accelerator network using a 2nd network interface. A VME crate for timing, pre-amp

control and a FESA server

Position of each bunch is measured individually Integration over the length of one bunch Base Line Restoration is needed because the BPMs have no DC response

Σ, X,Y integrals bunch rate 25 Averagers Ims rate

- Trajectories are the main object of the system
- Orbits are recorded by accumulating averages at 1ms intervals
- There is an averager for each bunch
- One channel averages over all bunches
- MRP requires additional post-processing

Most of the memory is used for trajectory data (0xfe00000 bytes). Averaging tables are of size 4096.

Synchronization

Phase Table Editor

Purpose:

Define state sequence Define harmonic values Generate Gate, BLR and LO

There is a state table file for each beam type

The system loads the right one according to the PLS telegram just before each cycle start

The aggregate front-end data rate is 30 GB/s (120 channels x 125MS/s x 2 bytes). After data reduction: 3GB/s (40 BPMs x 20 bunches x 8 bytes x 477 kHz).

- The system acquires more data than you can hope to get out of it.
- The TMS can serve multiple simultaneous independent clients.
- It can deliver up to about 500k points/cycle.
- That's about 25ms of trajectory, or instantaneous positions at a given PU over a full acceleration cycle of 1.2s.
- Intervening software layers and network bottlenecks may well prevent you from exploiting that.

Software architecture

Expert interface using FESA

Hardware platform: I-tech's Libera Digitizes individual plate signals. **BPM** signal (single plate) Beam-synchronous timing via threshold crossing detection. window algorithm Minimum Threshold 2 Threshold 1 window generator l, r, t, b Σ Σ(l, r, t, b) left(l) Σ(ľ, r BLR reduced PMC x pos. parallel riaht(r) IOs. BIR data ADCs top(t) data l, r, t, b error detection err. msg. merger bottom(b) 14b t, b BLR full serial Σ(ť, b' Rocket 125MS/s10 data y pos. ÷ t, b BLR Δ(ť.

The position of *each individual* bunch is transferred to the server The readout via FESA (CERN), developed in cooperation with COSYLAB

Status:

Nearly finished incl. GUI First test in Feb 09

Features:

Data rate: up to 600 MB/s (50MB/s per BPM) On-the-fly calculations

Evaluation tools for tune (see poster), closed orbit, trajectories

P⁺, injection oscillations & injection bump collapse

One of two 5e12ppb P⁺ bunches, 11ms after injection

(These data are low_pass filtered to reduce noise)

Ejection: Sum signal on PU15 starting at 838ms

Note: Extraction over 5-turns

The old PS trajectory system (CODD):

- Two-turn trajectories only
- On one selected bunch
- 5ms dead time

The new PS trajectory measurement system (TMS):

- Thousands-of-turns trajectories
- Orbits (trades time resolution for position resolution)
- Multi-bunch acquisitions

For both systems:

• Raw resolution: 0.3mm

We acknowledge the support of the European Community-Research Infrastructure Action under the FP6 "Structuring the European Research Area" programme (DIRAC secondary beams, contract number 515873).

