Paper | Title | Page |
---|---|---|
MOPD27 | SPIRAL2 Injector Diagnostics | 110 |
|
||
The future SPIRAL2 facility will be composed of a multi-beam driver accelerator (5mA/40Mev deuterons, 5mA/33MeV protons, 1mA/14.5 MeV/u heavy ions) and a dedicated building for the production of radioactive ion beams (RIBs). RIBs will be accelerated by the existing cyclotron CIME for the post acceleration and sent to GANIL’s experimental areas. The injector, constituted by an ion source, a deuterons/protons source, a room temperature RFQ and the MEBT line, will produce and accelerate beams to an energy of 0,75MeV/u. An Intermediate Test Bench (B.T.I.) is being built to commission the SPIRAL2 Injector through the first re-buncher of the MEBT line in a first step and the last re-buncher in a second step. The B.T.I. is designed to perform a wide variety of measurements and functions and to go more deeply in the understanding of the behaviour of diagnostics under high average intensity beams operations. A superconducting LINAC with two types of cavity will allow reaching 20 MeV/u for deuterons beam. This paper describes injector diagnostic developments and gives information about the current progress. |
||
TUPD17 | Phase and Amplitude Measurements for the SPIRAL2 Accelerator | 327 |
|
||
The SPIRAL2 project is composed of an accelerator and a radioactive beam section. Radioactive ions beams (RIBs) will be accelerated by the current cyclotron CIME and sent to GANIL experimental areas. The accelerator, with a RFQ and a superconducting Linac, will accelerate 5 mA deuterons up to 40MeV and 1 mA heavy ions up to 14.5 MeV/u. A new electronic device has been evaluated at GANIL to measure phase and amplitude of pick-up signals. The principle consists of directly digitizing pulses by under-sampling. Phase and amplitude of different harmonics are then calculated with a FPGA by an I/Q method. Tests and first results of a prototype are shown and presented as well as future evolutions. |