A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   R   S   T   U   V   W   X   Y   Z  

Sapinski, M.

Paper Title Page
TUPB11 Fast and High Accuracy Wire Scanner 188
 
  • M. Koujili, J. De Freitas, B. Dehning, J. Koopman, D. Ramos, M. Sapinski
    CERN, Geneva
  • Y. Ait Amira
    UFC, Besançon
  • A. Djerdir
    UTBM, Belfort
 
 

Scanning of a high intensity particle beam imposes challenging requirements on Wire Scanner system. It is expected to reach scanning speed of 20 m/s with position accuracy of the order of 1 μm. In addition a timing accuracy better than 1 millisecond is needed. The adopted solution consists of a wire holding fork rotating by maximal of 200°. Fork, rotor and angular position sensor are mounted on the same axis and located in a chamber connected to the beam vacuum. The requirements imply the design of a system with extremely low vibration, vacuum compatibility, radiation, and temperature tolerance. The adopted solution consists of a rotary brushless synchronous motor with the permanent magnet rotor installed inside of the vacuum chamber and the stator installed outside. The accurate position sensor will be mounted on the rotary shaft inside of vacuum chamber and has to resist bake-out temperature of 200°C and ionizing radiation up to tenth of kGy/years. A digital feedback controller allows maximum flexibility for the loop parameters and feeds the 3 phases input for the linear power driver. The paper will present a detail discussion of chosen concept and the selected components.

 
TUPB31 Configuration and Validation of the LHC Beam Loss Monitoring System 240
 
  • S. Jackson, B. Dehning, J. Emery, J. Fitzek, F. Follin, V. Kain, G. Kruk, M. Misiowiec, C. Roderick, M. Sapinski, C. Zamantzas
    CERN, Geneva
 
 

The LHC Beam Loss Monitoring (BLM) system is one of the most complex instrumentation systems deployed in the LHC. As well as protecting the machine, the system is also used as a means of diagnosing machine faults, and providing feedback of losses to the control room and several systems such as the Collimation, the Beam Dump and the Post-Mortem. The system has to transmit and process signals from over 4'000 monitors, and has approaching 3 million configurable parameters. This paper describes the types of configuration data needed, the means used to store and deploy all the parameters in such a distributed system and how operators are able to alter the operating parameters of the system, particularly with regard to the loss threshold values. The various security mechanisms put in place, both at the hardware and software level, to avoid accidental or malicious modification of these BLM parameters are also shown for each case.

 
TUPD40 Carbon Fibre Damage in Accelerator Beam 390
 
  • M. Sapinski, B. Dehning, A. Guerrero, J. Koopman, E. Métral
    CERN, Geneva
 
 

Carbon fibres are commonly used as moving targets in Beam Wire Scanners. Because of their thermo mechanical properties they are very resistant to particle beams. Their strength deteriorates with time due to low-cycle thermal fatigue. In case of high intensity beams this process can accelerate and in extreme cases the fibre is damaged during a scan. In this work a model describing the fibre temperature, thermionic emission and sublimation is discussed. Results are compared with fibre damage test performed on the CERN SPS beam in November 2008. For the operation of Wire Scanners with high intensity beams damage threshold are predicted.