A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   R   S   T   U   V   W   X   Y   Z  

Pullia, M.

Paper Title Page
MOPD31 Beam Diagnostics in the CNAO Injection Lines commissioning 119
 
  • G. Balbinot, E. Bressi, M. Caldara, A. Parravicini, M. Pullia, M. Spairani
    CNAO Foundation, Milan
  • C. Biscari
    INFN/LNF, Frascati (Roma)
  • J. Bosser
    CERN, Geneva
 
 

The CNAO, the first Italian center for deep hadrontherapy, is presently in its final step of installation. It will deliver treatments with active scanning both with Proton and Carbon ion beams. Commissioning of the low energy injection lines has been successfully concluded in January 2009. CNAO beams are generated by two ECR sources which are both able to produce both particle species. The beam energy in the Low Energy Beam Transfer (LEBT) line is 8 keV/u. A compact and versatile tank containing a complete set of diagnostic tools has been intensively used for the line commissioning: in a length of 390mm it houses two wire scanners, for vertical and horizontal beam transverse profile, a Faraday Cup, for current measurement, and two vertical and horizontal plates for beam halo suppression , emittance measurements, beam collimation and particles selection. Using one tank devices, phase space distribution reconstruction can be quickly performed as well as synchronous profiles and intensity measurements. Commissioning results and measurements are presented.

 
TUPD21 A “Not-Interceptive” Faraday Cup in the CNAO Low Energy Injection Lines 339
 
  • G. Balbinot, M. Caldara, L. Lanzavecchia, A. Parravicini, M. Pullia
    CNAO Foundation, Milan
  • J. Bosser
    CERN, Geneva
 
 

The CNAO, the first Italian center for deep hadrontherapy, is presently in its final step of installation. Commissioning of the low energy injection lines has been successfully concluded in January 2009. The synchrotron injection chain consists of a 8 keV/u Low Energy Beam Transfer (LEBT) line, an RFQ to accelerate the beam up to 400 keV/u, a LINAC to reach the 7 Mev/u injection energy and a Medium Energy Beam Transfer line. At the end of the LEBT line, just upstream the RFQ, an electrostatic Chopper deviates the beam for about 100 micro-seconds every 2 seconds on the vacuum chamber, in order to shape the particles batch according to LINAC requirements and to minimize the beam lost at the RFQ entrance. The chamber section hit by the beam was electrically isolated from the adjacent vacuum chambers, allowing the reading of the LEBT beam current. The detector is based on the Faraday Cup working principle, but it results in a “not-interceptive” monitor that is able to measure, continuously, the source beam current ripples and stability without affecting the beam delivered to the synchrotron. The system is presently under commissioning with beam and preliminary results are presented.