A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   R   S   T   U   V   W   X   Y   Z  

Haseitl, R.

Paper Title Page
MOPD42 ProfileView - A Data Acquisition System for Beam Induced Fluorescence Monitors 134
 
  • R. Haseitl, C.A. Andre, F. Becker, P. Forck
    GSI, Darmstadt
 
 

At the GSI Linac and transfer lines several Beam Induced Fluorescence Monitors (BIF) for transverse profile determination are installed. The non-intercepting measurement principle is based on the excitation of residual gas molecules by the beam and the detection of the fluorescence photons with image intensified cameras. This allows simultaneous profile determination at multiple positions without beam disturbance. The software ProfileView is a data acquisition system to visualize and record the profiles of several BIF monitors along the beamline. One BIF monitor comprises two image intensified cameras with remote irises, timing interface, gas pressure control and remote reset functionality. The basic functions needed for daily operation are combined in an easy-to-use graphical user interface. Beside this 'operator mode' an 'expert mode' can be called by advanced users to control every hard- or software parameter of the whole system separately. This contribution describes the software design and its realization for communication and data display.

 
TUPB02 Beam Induced Fluoresence Monitor and Imaging Spectrography of Different Working Gases 161
 
  • F. Becker, C.A. Andre, P. Forck, R. Haseitl, A. Hug, B. Walasek-Höhne
    GSI, Darmstadt
  • F.M. Bieniosek, P.N. Ni
    LBNL, Berkeley, California
  • D.H.H. Hoffmann
    TU Darmstadt, Darmstadt
 
 

As conventional intercepting diagnostics will not withstand high intensity ion beams, Beam Induced Fluorescence (BIF) profile monitors constitute a pre-eminent alternative for online profile measurements. At present two BIF monitors are installed at the GSI UNILAC and several locations are planned for the FAIR high energy beam transport lines. For further optimizations accuracy issues like gas dynamics have to be investigated systematically. Especially the determination of focused beams in front of targets or beam intensities near the space charge limit rely on a careful selection of proper working gas transitions to keep profile distortions as low as possible. With an imaging spectrograph beam induced fluorescence spectra in the range of 300-800 nm were investigated. Wavelength-selective beam profiles were obtained for 5 MeV/u sulphur and tantalum beams in nitrogen, xenon, krypton, argon and helium gas at pressures below 10-3 mbar. In the calibrated BIF spectra the specific gas transitions were identified. The measurement results are compared with particle tracking simulations and discussed for typical applications at the present setup and the future FAIR facility.