Paper | Title | Page |
---|---|---|
TUPB44 | On the Limitations of Longitudinal Phase Space Measurements using a Transverse Deflecting Structure | 269 |
|
||
High-brightness electron bunches with low energy spread, small emittance and high peak currents are the basis for the operation of high-gain Free Electron Lasers (FELs). As only part of the longitudinally compressed bunches contributes to the lasing process, time-resolved measurements of the bunch parameters are essential for the optimisation and operation of the FEL. Transverse deflecting structures (TDS) have been proven to be powerful tools for time-resolved measurements. Operated in combination with a magnetic energy spectrometer, the measurement of the longitudinal phase space can be accomplished. Especially in case of ultra-short electron bunches with high peak currents for which a time resolution on the order of 10 fs would be desirable, both the TDS and magnetic energy spectrometer have intrinsic limitations on the attainable resolution. In this paper, we discuss the fundamental limitations on both the time and energy resolution, and how these quantities are connected. |
||
TUPD22 | Beam Based Measurements of the RF Amplitude Stability at FLASH using a Synchrotron Radiation Monitor | 342 |
|
||
To exploit the short radiation pulses in pump-probe experiments at single-pass free-electron lasers (FELs), stabilization of the longitudinal profile and arrival time of the electron bunches is an essential prerequisite. Beam energy fluctuations, induced by the cavity field regulation in the accelerating modules, transform into an arrival time jitter in subsequent magnetic chicanes used for bunch compression due to the longitudinal dispersion. The development of beam based monitors is of particular importance for the validation and optimization of the cavity field regulation. In this paper we present bunch-resolved energy jitter measurements that have been recorded with a synchrotron radiation monitor at the Free-electron LASer in Hamburg (FLASH). The cavity field detectors of the accelerating module have been identified as the main source of the stochastical noise which corresponds to a beam energy jitter of 0.012%. The reduction of deterministic cavity field imperfections by applying an adaptive feedforward learning algorithm for the cavity field regulation is demonstrated. |
||
TUPD43 | Synchrotron Radiation Monitor for Bunch-Resolved Beam Energy Measurements at FLASH | 399 |
|
||
A synchrotron radiation monitor (SRM) based on a multi-anode photomultiplier tube (PMT) has been installed in the first magnetic bunch compressor chicane at the Free-electron LASer in Hamburg (FLASH). The synchrotron radiation emitted in the third dipole of the magnetic chicane is imaged by a telescope onto two anodes of the PMT. In this way the horizontal beam position of the electron bunches is recorded which corresponds to the beam energy as the beam position is governed by the beam energy in the dispersive section of the magnetic chicane. The fast PMT signals are digitized by analog -to-digital converters (ADC) which enables bunch-resolved beam energy measurement within the trains of the up to 800 bunches generated by the superconducting linear accelerator of FLASH. In this paper we describe the experimental setup of the SRM and present first commissioning results for various accelerator settings. |