A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   R   S   T   U   V   W   X   Y   Z  

Dietrich, J.

Paper Title Page
MOPD01 Non-Destructive Beam Position Measurement in a Proton Therapy Beam Line 41
 
  • D.T. Fourie, L.S. Anthony, A.H. Botha, J.L. Conradie, J.G. De Villiers, J.L.G. Delsink, P.F. Rohwer, P.A. van Schalkwyk
    iThemba LABS, Somerset West
  • J. Dietrich
    FZJ, Jülich
 
 

Non-destructive beam position monitors (BPMs) have been in use at iThemba LABS for several years in the neutron therapy and radioisotope production beamlines, as well as in the transfer lines between the K200 separated-sector cyclotron and the two K8 injector cyclotrons. The sensitivity of these BPMs is limited by noise and pickup from the RF systems to about 300 nA in the high energy beam lines. For proton therapy, using the scattering method, position measurement at beam currents as low as 20 nA have to be made. A new and more sensitive BPM as well as the electronic measuring equipment, using RF pickup cancellation and improved filtering, have been developed and installed in the proton therapy beamline. The BPM, the electronic equipment and the results of measurements at beam currents down to 10 nA for 200 MeV protons are described.

 
TUPB10 Beam Profile Monitoring at COSY via Light Emitted by Residual Gas 185
 
  • C. Böhme
    UniDo/IBS, Dortmund
  • J.L. Conradie
    iThemba LABS, Somerset West
  • J. Dietrich, V. Kamerdzhiev
    FZJ, Jülich
  • T. Weis
    DELTA, Dortmund
 
 

Scintillation is one of the outcomes of beam interaction with residual gas. This process is utilized for non-destructive beam profile monitoring. Test bench measurements at various gas compositions and pressures as well as ones with the circulating proton beam at COSY-Juelich were performed. This was done using a single large photocathode PMT to estimate the photon yield. A multichannel photomultiplier was used along with a lens system to monitor the ion beam profile. Experimental results are presented and the challenges of the approach are discussed.

 
TUPB12 Beam Test of the FAIR IPM Prototype in COSY 191
 
  • V. Kamerdzhiev, J. Dietrich
    FZJ, Jülich
  • C. Böhme
    UniDo/IBS, Dortmund
  • P. Forck, T. Giacomini
    GSI, Darmstadt
  • D.A. Liakin
    ITEP, Moscow
 
 

The advanced ionization beam profile monitor is being developed at GSI for the future FAIR facility in collaboration with ITEP and FZ-Jülich. In January 2009 the IPM prototype was installed in COSY-Jülich. After successful hardware test the beam tests followed. The prototype was operated without magnetic field, thus only residual gas ions were detected. An arrangement consisting of an MCP stack, a phosphor screen, and a CCD camera was used to detect ions. We report the first profile measurements of the proton beam up to 2.8 GeV at COSY.