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Abstract

Transverse mode coupling instability (TMCI or fast
head-tail) is the principal beam current limitation of the
VEPP-4M electron-positron collider. For the high-energy
physics experiments at the 5.5 GeV energy, the VEPP-4M
bunch current should exceed much the TMCI threshold. To
suppress transverse beam instabilities, a broadband bunch-
by-bunch digital feedback system is developed. The feed-
back concept is described, the system layout and first beam
measurements are presented.

HEAD-TAIL EFFECTS

For high-energy physics experiments in the 5.2-5.5 GeV
energy range, design value of the VEPP-4M beam current
is 40 mA per bunch in 2e− × 2e+-bunch operation mode.
At the injection energy of E = 1.8 GeV, the beam current
is limited by the vertical transverse mode coupling insta-
bility (TMCI or fast head-tail) [1]. There is an approxi-
mate formula for the TMCI threshold current derived using
a two-particle model [2]:

Itmci =
σz√
2πR

8π E
e νs∑

k �Z⊥kβk
, (1)

where σz is the r.m.s. bunch length, R is the average ma-
chine radius, νs is the synchrotron tune, and

∑
k �Z⊥kβk

is the beta-weighted broad-band reactive impedance of the
ring. For the VEPP-4M at the injection energy, the thresh-
old current is 10-12 mA.

If a machine chromaticity ξ = δνβ

δp /p is non-zero, the
chromatic head-tail effect appears, and some oscillation
modes become unstable for any beam current, and the cur-
rent threshold can result from radiation damping only. For
the chromatic head-tail, an increment/decrement of the co-
herent oscillation mode (1/τ+) and incoherent one (1/τ−)
is expressed as [2]:
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where νβ is the betatron tune, f(2χ) is the complex func-
tion f(u) =

∫ π

0 eiu sin xdx of the head-tail phase
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α
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R
, (3)

which is a betatron phase advance caused by the chromatic-
ity during a half-period of synchrotron oscillation (from
head to tail). The coherent mode (center of mass oscilla-
tion) is damped if ξ > 0 and anti-damped if ξ < 0 (for a

positive momentum compaction α), whereas for the inco-
herent modes (beam size) the effect is vice versa.

FEEDBACK THEORY

As it follows from (2), positive chromaticity suppress the
coherent oscillation mode, i.e. makes bunch center of mass
stable, but other oscillation modes are unstable, negative
chromaticity has the inverse effect.

A detailed analysis of a feedback applicability is given
in [3]. The main idea is to suppress the coherent oscillation
mode using a resistive feedback, while to keep other modes
stable due to a negative chromaticity.

Because of the beam-environment interaction, each par-
ticle in a bunch is perturbed by electro-magnetic fields
induced by all other particles. For the model bunch of
N macro-particles uniformly distributed over synchrotron
phases, a system of differential equations can be written:
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where

Wkjm = Z⊥ [−iω0(m− νs)] exp
[
iω0(m− ξ)

zk − zj

c

]
,

yk is the complex betatron oscillation amplitude of k−th
particle, ω0 is the revolution frequency, Ib is the bunch cur-
rent, 〈β〉 is the average beta-function. Z⊥ is the broad-band
transverse coupling impedance, characterizing the short-
range beam-environment interaction. The VEPP-4M ver-
tical broad-band coupling impedance estimated from the
coherent tune shift measurement [1] is about 2 MΩ/m.

It is not conveniently to analyze such complicated mo-
tion using the system (4), because the number of equations
is equal to the number of particles N , which should be big
enough to obtain reasonable results. Moreover, since the
longitudinal coordinates of the particles zk, zj are explic-
itly time-dependent, the system (4) is a system of differen-
tial equations with variable coefficients.

As it is shown in [3], an analysis using symmetric mode
expansion is much more efficient because only a few of
lowest oscillation modes are significant. In addition, this
approach allows us to avoid the variable coefficients. Us-
ing the continuous medium model and Vlasov equation, the
problem of stability can be reduced to a system of algebraic
equation:

(iλ + in)ank +
Ib〈β〉
4πνs

E
e

∞∑

n′=−∞
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k′=0

An′k′
nk an′k′ = 0, (5)
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where ank are the complex amplitudes of oscillation
modes, n, n′ are the indices of transverse modes, k, k ′

are the indices of longitudinal modes. The matrix ele-
ments Ankn′k′ are functions of the broad-band coupling
impedance Z⊥(ω), and of the head-tail phase (3).

A feedback can be introduced in (5) as an equivalent
transverse impedance ZFB. In terms of oscillation modes,
the system of equations with a feedback takes on form:

iλank +
∞∑

n′=−∞

∞∑

k′=0

[I(An′k′
nk + δn0δn′0fBn′k′

nk )

+inδnn′δkk′ ]an′k′ = 0, (6)

where Bn′k′
nk are the feedback matrix elements dependent

on the feedback impedance ZFB . A real feedback system
including beam position monitors and kickers can effect on
a beam center of mass only, this is expressed in (6) by the
Kronecker delta product δn0δn′0. I is the dimensionless
bunch current normalized in such a way that the factor be-
fore the sums in (6) is equal to unity:

I =
Ib

Ib0
, Ib0 =

4πνs
E
e

Z⊥〈β〉
σz

R
. (7)

The feedback parameter f is a complex normalization
factor of the feedback matrix elements Bn′k′

nk . If only
B00

00 = 1 and all other Bn′k′
nk = 0, the feedback contribu-

tion to the complex betatron frequency shift, related to the
synchrotron frequency, is ifI . For a rigid bunch of the
Ib = I · Ib0 current, a decrement of the resistive feedback
with the parameter f is τ−1

FB = fIωs s−1.
Stability analysis is done in the following way: the sys-

tem (5) is an algebraic system of equations with zero right-
hand part, therefore it has nontrivial solutions only if −iλ
values coincide with eigenvalues of the matrix related to
the ank. Because the system (5) is infinite-dimensional, it
should be truncated to the required number of modes. For
each oscillation mode, λ is the complex dimensionless fre-
quency shift, �λ = Δωβ

ωs
is the relative betatron frequency

shift, �λ = 2π
τωs

is the increment (if �λ < 0) or decrement
(if �λ > 0), normalized by the synchrotron frequency. So,
on the basis of the system (5) eigenvalues, it is possible to
make a conclusion about stability of the motion: if �λ < 0
for at least one mode, the motion is unstable.

Numerical solutions of the eigenvalue problem (6) for
10 lower oscillation modes are shown in figure 1. There are
�λ (upper plots) and�λ (lower plots) in dependence of the
bunch current Ib. The left pair of plots corresponds to zero
chromaticity ξ = 0 without a feedback f = 0, the right pair
corresponds to a negative chromaticity ξ = −8 with a re-
sistive feedback f = 5. For the ξ = 0, f = 0 case, when
the bunch current exceeds the threshold (about 11 mA),
one can see first two-mode coupling. At the same time a
negative �λ values corresponding to an increment appear.
However for the ξ = −8, f = 5 case, a negative �λ corre-
sponding to an increment appears when the bunch current
exceeds the TMCI threshold about 4 times (Ib > 40 mA).
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Figure 1: Eigenvalue problem solution.

Thus, using numerical solution of the eigenvalue prob-
lem (6) with various bunch current I , we can find a range
of the feedback parameter where all the oscillation modes
are stable. Figure 2 shows the maximum possible current
Imax of a stable bunch in dependence of the complex feed-
back parameter f (presented as the module |f | and argu-
ment arg f ) for the chromaticity of ξ = −8. One can see
an area of f when the bunch of current exceeding 40 mA
is stable, the black arrow indicates the maximal current of
42 mA achievable with f = 2.65 + 0.38i.
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Figure 2: Feedback parameter optimization, ξ = −8.

Let’s calculate the kicker voltage required. If the feed-
back works in the presence of coherent betatron oscillation,
a beam is deflected turn-by-turn by the feedback kicker.
The feedback kick Δy ′FB is related to the beam position y
and angle y′ at the feedback beam position monitor (BPM)
through the transition matrix dependent on the β and α lat-
tice functions at the BPM and at the kicker, and on the
betatron phase advance between the BPM and the kicker.
To obtain the y ′ value which can not be measured directly,
two BPMs are used. For rough estimation, we can assume
Δy′FB ∝ y

〈βy〉 , where 〈βy〉 is the average beta-function.
As it was mentioned above, the feedback parameter f
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is an ωs-normalized decrement introduced by the feedback
into a motion of a rigid bunch with a unit normalized cur-
rent I = 1. Expressing the feedback kick Δy ′FB through
the feedback parameter f , we can write:

Δy′FB = 4πνs|f |I
y

〈βy〉
. (8)

For the kicker formed by two matched strip-lines, the volt-
age amplitude required for the Δy ′FB kick, is:

VFB =
E

e

d

L
Δy′FB, (9)

where L is the kicker length and d is the gap between the
strip-lines.
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Figure 3: Maximal beam current and kicker voltage.

For the VEPP-4M, taking L = 1.8 m, d = 25 mm,
νs = 0.02, and 〈βy〉 = 13.6 m, the maximal achievable
beam current together with the required kicker voltage have
been calculated with various chromaticity and with initial
betatron oscillation amplitude of y = 1 mm. The calcula-
tion result is presented in figure 3. As one can see, the op-
timal chromaticity is about −10, where the bunch current
exceeds 40 mA with a reasonable kicker voltage of 1.8 kV.
Since four kickers are planned to use, and the initial beta-
tron oscillation amplitude can be reduced down to 0.5 mm
by fine adjustment of the injection, the kicker voltage of
200-250 V seems to be enough.

FEEDBACK SYSTEM LAYOUT

Figure 4 shows a block diagram of the VEPP-4M trans-
verse feedback system. Beam-induced signals of two 45 m-
distanced strip-line BPMs pass through a sum-difference
circuit to the pickup station, which forms an analogous sig-
nal of 30 MHz frequency band, proportional to the beam
position. These signals come to the signal processing board
to be digitized by the 12-bit 50 MHz ADC. Then the beam
position data are processed by the digital signal proces-
sor (DSP) TMS320C6713, which calculates kick param-
eters required for the oscillation damping. The kick signals
formed by the DSP are converted in the 12-bit digital-to-
analog converter, and after amplification by the broad-band
power amplifiers come to the kickers. The same BPMs and
kickers are used both for the electron and positron bunches,
but with separated signal processing electronics.
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Figure 4: Feedback system block diagram.

BEAM MEASUREMENTS

At present, all the electronics for one feedback channel
is designed, produced and installed at the VEPP-4M. A test
beam measurements have been done to evaluate the system
sensitivity and spatial resolution. Turn-by-turn r.m.s. reso-
lution of the strip-line BPM, measured with a beam of 1010

particles, is about 80 μm.
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Figure 5: Feedback decrement vs phase.

One more set of beam measurements have been done to
find an optimal range of the feedback phase. The feedback
decrement in dependence of the phase is presented in fig-
ure 5. A range of the feedback phase where the decrement
is higher than 35 ms−1 (i.e. τFB < 2π/ωs) is about 45◦.
This suggests that the feedback will be able to work stably
during the VEPP-4M energy ramp, when the betatron tune
can vary with time.

REFERENCES

[1] V.Kiselev, V.Smaluk, Experimental Study of Impedances and
Instabilities at the VEPP-4M Storage Ring, EPAC’98, Stock-
holm, 1998

[2] A. Chao, Physics of Collective Beam Instabilities, Wiley,
New York, 1993

[3] M. Karliner, K. Popov, Theory of a feedback to cure trans-
verse mode coupling instability, Nuclear Instruments and
Methods in Physics Research A 537 (2005) 481-500

Proceedings of DIPAC 2007, Venice, Italy WEPC26

Beam Instrumentation and Feedback Feedbacks

369


