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Abstract

Feedbacks on tune, coupling and chromaticity are be-
coming an integral part of safe and reliable accelerator op-
eration. Tight tolerances on beam parameters typically con-
strain the allowed oscillation amplitudes to the microme-
tre range, leaving only a small margin for the transverse
beam and momentum excitations required for tune and
chromaticity measurements. This contribution presents an
overview of these beam-based feedback systems, their ar-
chitecture and design choices involved. It discusses perfor-
mance limitations due to cross-constraints, non-linearities,
the coupling between multiple nested loops, and the inter-
dependence of beam parameters.

INTRODUCTION

The control of orbit and energy became de-facto stan-
dard as nearly all modern light sources, lepton and hadron
colliders alike deploy at least fast orbit and energy feed-
backs that minimise transverse beam movements, spurious
dispersion by centreing the beam in the quadrupoles and
maintain a stable vertical orbit inside the sextupoles that
would otherwise give rise to emittance coupling. A sum-
mary and overview of beam stability requirements and sta-
bilisation over a large range of accelerators can be found
in [1-3].

Recent improvements in hadron colliders have led to sig-
nificantly increased stored beam energies which require ex-
cellent control of particle losses inside a superconducting
machine. Thus, most requirements on key beam parame-
ters in superconducting hadron colliders strongly depend
on the capability to control particle losses inside the accel-
erator. In the case of the LHC, the cleaning system has the
tightest constraints on the orbit and requires a stability bet-
ter than 25 pm during nominal operation at the location of
the collimators which leaves only a small margin for beam
excitation required for the measurement and control of tune
and chromaticity [11].

Automated feedback control systems are usually not lim-
ited to the control of orbit and energy but are often com-
plemented by tune, coupling and chromaticity feedbacks,
which have become an increasingly important part of oper-
ation [4-6,9,10]. As for the orbit, the requirements on tune
stability in superconducting hadron colliders is primarily
given by the ability to control particle loss and the neg-
ligible synchrotron radiation damping. The usually large
tune footprint makes it necessary to avoid up to the 12th
order resonances [12]. The corresponding stability is usu-
ally in the order of §QQ ~ 103 and is similar to the one of
B-factories as well as ramping synchrotron light sources,
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although the latter is due to performance rather than ma-
chine safety reasons. In addition, these machines have of-
ten quite demanding tune working points in the vicinity of
the half-integer resonance, as these regions are able to ac-
commaodate the usually large footprints as well as mitigate
the effect of beam-beam interactions and electron clouds
that cause the large footprints in the first place (PEP-1I [7]:
¢z = 0.505 (LER) & ¢, = 0.503 (HER); KEK-b [8]:
¢z = 0.504 (LER) & ¢, = 0.510 (HER)).

The decay and snapback phenomena, a particularity of
superconducting magnets causes, in case of the LHC, a
large chromaticity drift that if uncorrected is expected to
exceed more than 100 units within a few hundred seconds
after the start of the ramp [12]. Consequently, to guarantee
the stability of multiple particles ensemble, the chromatic-
ity should be controlled within Q' ~ 2+1. The LHC is thus
the first accelerator that, in addition to orbit, energy, tune
and coupling, may need to rely on an automated control of
chromaticity for safe and reliable machine operation.

FEEDBACK CONTROL DESIGN

In case of low-order beam parameters — orbit, tune, cou-
pling, chromaticity and energy — the effect of individual
corrector circuits is, for most accelerators, sufficiently lin-
ear and can be cast into matrices. The parameter control
in space domain establishes corrector circuit strengths that
for steady-state perturbations minimises the residual mea-
sured parameter deviation. The control in space domain
consists essentially of the inversion of the beam response
matrices that relate the corrector circuit strength change to
the given bean parameter. Singular-Value-Decomposition
(SVD) is one of the most popular and widely used inver-
sion algorithms ( [1, 2]). Further information can be found
in [3,13,14].

Time Domain

A simple loop block diagram consisting of a single-
input-single-output (SISO) process G(s) and controller
D(s) is shown in Figure 1.
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Figure 1: First order closed loop blocr:nk diagram.

The stability and sensitivity to perturbations and noise is
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defined by the following functions
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where T'(s) is the complementary (nominal) transfer func-
tion, S4(s) the nominal sensitivity defining the loop distur-
bance rejection, S;(s) the input-disturbance sensitivity and
S (s) the control sensitivity. The state variables are indi-
cated in Figure 1. The sensitivity to measurement noise is
equal to the nominal transfer function 7.

Classic feedback designs rely on the discussion of de-
nominator zeros in equation 1 and 2 while keeping con-
straints such as required bandwidth, minimisation of over-
shoot, limits on the maximum possible excitation signal
and robustness with respect to model and measurement er-
rors. For ideal processes, this yields adequate controller
designs but often falls short in providing a simple compre-
hensive method for estimating and modifying the loop sen-
sitivity (robustness) in the presence of process uncertain-
ties, non-linearities and noise.

This paper focuses on Youla’s affine parameterisation
method for optimal controllers, which is based on the an-
alytic process inversion, first introduced in [15]. For an
open-loop stable process G(s), the nominal closed-loop
transfer function is stable if and only if Q(s) is an arbitrary
stable proper transfer function and D(s) parameterised as:

QW)
1—Q(s)G(s)
The stability of the closed loop system follows immediately

out of the above definition if inserted into equations 1 to 4.
The sensitivity functions in the Q(s) form are given as:

D(s) ®)

T(s) = Qs)G(s) (6)
Sa(s) = 1-Q(s)G(s) ()
Si(s) = (1-Q(s)G(s))G(s) )
Su(s) = Qs) 9)

Assuming G(s) is stable, the only requirement for closed
loop stability is for Q(s) to be stable. The strength of this
method is the explicit controller design with respect to re-
quired closed loop performance, as visible in equation 6,
and required stability (equations 7 to 9). Equations 6 and
7 are complementary and illustrate the intrinsic limiting
trade-off of feedbacks that either have a good disturbance
rejection or are robust with respect to noise. The ultimate
limit is thus defined rather by the bandwidth and noise per-
formance of the corrector circuits and beam measurements
than by the feedback loop design itself. Systematic and
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thorough analysis of involved beam instrumentation and
corrector circuits are thus essential for achieving best beam
parameter stabilisation.

First Order Example

The design formalism can be demonstrated using a sim-
ple first order system G (s) = =52 with open-loop gain

.  Tes+1 _
K, and time constant 7. A common controller design
ansatz is to write Q(s) as

Q(s) = Fq(s) - Go(s)

with F(s) a trade-off function and G{(s) the pseudo-
inverse of the process. Since Gy does not contain any in-
stable zeros, the pseudo-inverse equals the inverse and is
given by G (s) := [Go(s)] "' = T+, Q(s). In order for
D(s) to be biproper, Fg(s) must have a degree of one and
can be written as:

(10)

1
as+ 1

FQ(S) = (11)
Inserting equation 10 into Youla’s controller parameterisa-
tion equation 5 yields the following controller

T 1

D(s) = — 4+ ——
(5) Koa + Koas

1
=K, +K;- - (12)
S
which shows a a simple PI controller structure with propor-
tional gains K, and integral gain K;. Inserting equation 10
into equation 6 yields

To(s) = Fo(s) (13)

that the closed loop response is essentially determined by
the choice of trade-off function F(s) and that the closed
loop bandwidth is proportional to the parameter 1/c. This
can be used to tune the closed loop between: high distur-
bance rejection but high sensitivity to measurement noise
(small «) and low noise sensitivity but low disturbance re-
jection (large «) depending on the operational scenario.
The maximum possible closed loop bandwidth is limited
by the excitation, as described by equation 9. In case of
power converters, for example, the excitation is limited by
the maximum available voltage.

Non-linear Feedback Loops

The same method can be extended to open-loop instable
and multi-input-multi-output (MIMO) systems [15]. Real
life feedbacks may contain significant delays A (due to e.g.
data transmission, data processing etc.) and non-linearities
Gn1(s), due to e.g. saturation and rate limits of the cor-
rector circuits’ power supplies. The modified process can
be written, for example as:

G(s) = Go(s) - e GnL(s) (14)
Using the same pseudo-inverse G{(s) as for the above
example and inserting equation 10 into equation 5 yields



Proceedings of DIPAC 2007, Venice, Italy

a controller parameterisation D (s) including a classic
Smith-Predictor and anti-windup paths, discussed in more
detail in [16,17]. Inserting equation 10 including the de-
lay and non-linearities into equation 6 yields the following
closed loop transfer function:

T(s) = Fg(s)- e *Gnr(s) (15)
Similar to the linear case discussed above, the closed loop
is essentially defined by the function Fg(s) that within
limits can be chosen arbitrarily based on the required dis-
turbance rejection and robustness during possibly different
operational scenarios (gain-scheduling). Further informa-
tion and a review on Youla’s parameterisation can be found
in [17,18].

APPLICATIONTO
PHASE-LOCKED-LOOP SYSTEM
DESIGN

Beam-based feedbacks are ultimately limited by thermal
drifts, noise and systematics of involved devices. A sys-
tematic and thorough analysis of involved beam instrumen-
tation and corrector circuits is thus mandatory for achieving
best beam parameter stabilisation.

The above principles can readily be applied to the design
of a Phase-Locked-Loop (PLL) control system that contin-
uously adjusts phase ¢ and frequency f. of its reference
exciter to match and thus to track changes of the betatron
tunes. A classic application of PLL is to modulate the beam
momentum using the RF frequency while tracking the tune.
The modulation amplitude can be then be used to derive the
linear machine chromaticity while the barycentre is a mea-
sure of the unperturbed tunes.

The tune resonance is described by a second order har-
monic oscillator and thus the tune resonance is found once
the the phase between excited and measured oscillation
equals 7/2. An exemplary PLL block diagram is shown
in Figure 2.
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Figure 2: Phase-Locked-Loop Scheme

The system mixes the input with the sine and cosine
component of the excitation signal followed by a low-pass
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filter in order to remove the 27 f . frequency component that
is created in the process of the mixing. The remaining sig-
nals are treated by a rectangular-to-polar (R2P) converter
that separates signal phase and amplitude which can fur-
ther be treated by two independent controller. In compar-
ison to classic analogue phase detectors, this scheme pro-
vides a twice as large dynamic range for the phase and a
true decoupling from the amplitude which proves to be ad-
vantageous in situations when phase and amplitude change
at the same time. The actual control input A is shifted by
pi/2 to zero in order to obtain a bipolar signal around the
tune resonance. Negative phases thus indicate that the exci-
tation frequency is below the tune resonance, and positive
phases the opposite. The real implementation requires fur-
ther compensation for other non-beam related contributions
to the measured phase shift such as constant lag due to data
processing, cables transmission delays, analogue pre-filters
Gopre(s) suppressing dominant harmonics (e.g. revolution
frequency) and response G (s) of the beam exciter itself.

In this representation, the PLL phase control loop dy-
namics and its design is reduced to a simple first order sys-
tem with the open loop gain K given by the slope of the
phase response at the location of the tune, and the inverse
time constant by the bandwidth of the low-pass filter. The
optimal controller D ,(s) is obtained according to the first
order system discussed above.

CROSS-DEPENDABILITY AND
CONSTRAINTS

In many accelerators, beam-based feedbacks are usually
established and designed one by one. For robust control
it is necessary to address possible cross-constraints, cross-
talk and coupling between several simultaneous and possi-
bly nested loops already in the design stage.

Betatron-Coupling

In a strict sense, the tune PLL measures eigenmodes
rather than the actual tune. In the presence of close tune
working points and strong global coupling these eigen-
modes may be rotated with respect to the (true) unperturbed
tunes. Assuming that the coupling sources are weak and
globally distributed, the eigenmodes @, and Q- are given

by
1
Qa=j (w+azyarricf) a9

with A = |g, — ¢, being the unperturbed tune-split and
C~ the complex coupling parameter. A direct use of the
tune eigenmodes may break any tune feedback loop once
the eigenmodes are rotated by /2 with respect to the real
tune. Thus it was recognised that under above conditions a
robust tune feedback loop also requires the control of cou-
pling itself [20]. Further details on this scheme and experi-
mental results can be found in [20].
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Figure 3: Nested loop scheme required for a coherent control of tune, coupling and chromaticity.

Inter-Loop Dependencies

The LHC, for example, requires a simultaneous control
of orbit, tune, coupling, chromaticity and energy. The tight-
est constraints derives from the LHC collimation system
that limits the possible relative momentum modulation, due
to aperture constraints and dispersion, to a few £2 ~ 10—°
only. With the requested nominal chromaticity resolution
and stability of one unit, the tune changes are minuscule.
In order to reflect these constraints in the overall loop de-
sign, the following nested control scheme for chromatic-
ity, tune and coupling, shown in Figure 3, is foreseen for
the LHC. The tune PLL is the inner-most loop measur-
ing the global tunes and coupling parameters. The loop
is first nested within the loop that measures and controls
the chromaticity and is then surrounded by the feedback
loop controlling the global tunes and coupling. The given
hierarchy is based on the fact that the decoupling is ob-
tained by choosing gradually reduced bandwidths for the
tune PLL (fp., ~ 8Hz), chromaticity (fs, =~ 1Hz) and
tune feedback (fy, < 1Hz). This nesting hierarchy is re-
quired particularly to eliminate the cross-talk between tune
and chromaticity feedback, as the tune feedback would oth-
erwise minimise the momentum-driven modulation as well
as tune modulation and thus compromise the chromaticity
measurement.

In addition, cross-talk is introduced between the chro-
maticity and orbit/energy feedback through the dispersion
orbit that is driven by the momentum modulation required
by the chromaticity feedback. In order to minimise this
cross-dependence, the foreseen LHC orbit feedback filters
and separates the dispersion orbit from the measured closed
orbit prior to performing any orbit correction.

The required effective correction rate (1 unit per second)
and resolution (1 unit) makes the LHC chromaticity feed-
back one of the most demanding beam-based feedbacks,
requires further research and development.
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Dependence on Tune Width

As described above, most classic tune PLL implementa-
tions assume a constant open loop gain K that depends on
the angle of the phase slope at the location of the tune reso-
nance ([4,5,9,10]). Due to varying chromaticity, amplitude
detuning, beam-beam, electron cloud, impedance and other
effects, the tune width, thus the phase slope and K may
change. In this case the optimal controller parameter be-
come functions of, for example, chromaticity itself. Using
linear control design only, this cross-dependence implies
either a controller design that is optimal for large chro-
maticities, which becomes sensitive to noise and instable
for low values of chromaticity, or a controller design that
is optimal for small chromaticities but lags behind the real
tune for large values of chromaticity [21]*.

Non-Tune Resonances

Another effect that can break and compromise the proper
function of the PLL loop is in the presence of strong reso-
nances other than the tune such as synchrotron sidebands or
synchro-betatron resonances. These add = phase advance
transitions that due to the phase detector’s 27 wrapping
property creates several zero phase locations to which the
tune PLL can lock onto. Using the Hilbert transform on can
show for a minimum-phase system that the PLL essentially
locks on the largest peak within the bandwidth. A narrow-
band excitation signal close to, for example, a synchrotron
sideband will thus always cause a lock onto the same res-
onance. The spurious tune locking can be mitigated by in-
creasing the excitation bandwidth prior to reaching the de-
sired lock condition. This can be done using a chirped ex-
citation and setting the initial PLL working point close to
the tune, by adding additional exciter ( [10]) or by largely

1The effect can be mitigated by stabilising the variation in the first
place, which in a way resembles a ’chicken-egg’ situation: one needs to
stabilise the chromaticity for a stable tune width and thus PLL, while the
PLL is needed to measure the chromaticity in the first place.
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increasing the closed loop bandwidth to create additional
jitter on the excitation frequency. The additional jitter in-
creases the effective sampling range ideally to cover more
than one synchrotron resonance. Once the loop is locked,
the bandwidth could be reduced in order to improve the
tracking stability and to reduce the bleed-through of phase
contribution of neighbouring resonances.

LOCKING ON COUPLED BUNCH MODES

A typical cross-dependency is intrinsic to the stability
requirements on orbit and tune: though tight constraints on
orbit excursion to micrometre level are beneficial to min-
imise feed-down effects and beam life-time, it also imposes
constraints on other feedbacks such as tune and chromatic-
ity, the measurements of which rely on transverse excita-
tions and momentum modulation. For the LHC the tune
and coupling PLL operates with transverse excitation lev-
els below 1 pm within the noise level and thus further min-
imises the cross between PLL and fast transverse damper.
However, since the PLL operates within the ’noise floor’
of the transverse damper feedback system, it does not ben-
efit from the suppression of coupled bunch modes, which
introduce additional resonance lines in the tune spectrum
that the PLL can potentially lock onto. This issue is usu-
ally addressed by so-called pilot or sacrificial bunches usu-
ally in the beginning of a bunch train, which are excluded
by the transverse feedback and explicitly selected for PLL
operation.

CONCLUSIONS

Youla’s affine parameterisation provides a simple yet
powerful design tool for optimal adaptive non-linear con-
trol of these feedbacks. Its strength is the explicit controller
representation that enables an un-obscured feedback design
with respect to closed loop robustness (noise insensitivity)
and steering precision.

Feedbacks are commonly deployed as an ensemble and
it is thus necessary to reflect this in the early design stage
in order to minimise cross-dependences and coupling of
multiple simultaneous nested loops and thus cross-talk in
between them. Possible decoupling techniques involve or-
thogonalisation of the feedback parameter space, separa-
tion in amplitude or by choosing different bandwidths for
each individual feedback loop.
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