WEO1A  —  Wednesday, first oral session   (23-May-07   09:00—10:50)

Chair: K. B. Scheidt, ESRF, Grenoble

Paper Title Page
WEO1A01 Sub-ps Timing and Synchronization Systems for Longitudinal Electron Bunch Profile Measurements 204
 
  • A. Winter
    DESY, Hamburg
 
  Precise timing and synchronization systems have become an increasingly important topic for next generation light sources. Particularly free electron lasers can emit X-ray pulses with pulse durations down to the few-tens of femtoseconds level. In order to utilize this potential temporal resolution for pump-probe experiments, a precise synchronization of the experimental laser to the X-ray pulse and stabilization of the electron beam arrival time at the undulators are mandatory. This requires a timing and synchronization system which can supply ultra-stable phase references over long distances, thus enabling the temporal stabilization of the electron beam to a sub-100 fs level. Furthermore, a precise timing and synchronization system renders possible extremely accurate measurements of the longitudinal electron bunch profile. This talk will give an overview of the status of existing sub-ps timing and synchronization systems and of systems currently under construction.  
WEO1A02 Progress in Ultrafast X-ray Streak Cameras 209
 
  • J. M. Byrd
    LBNL, Berkeley, California
 
  Streak cameras remain one of the tools for study of ultrafast phenomena. We present progress on modeling of x-ray streak cameras with application to measurement of ultrafast phenomena. Our approach is based on treating the streak camera as a photocathode gun and applying modeling tools for beam optics and electromagnetic fields. We use these models to compare with experimental results from a streak camera developed at the Advanced Light Source. We also show how this model can be used to explore several ideas for achieving sub-100 fsec resolution.  
WEO1A03 Instrumentation for Longitudinal Beam Gymnastics in FEL's and in the CLIC test facility 3 215
 
  • T. Lefèvre, H.-H. Braun, E. Bravin, S. Burger, R. Corsini, S. Döbert, L. Søby, F. Tecker, P. Urschütz, C. P. Welsch
    CERN, Geneva
  • D. Alesini, C. Biscari, B. Buonomo, O. Coiro, A. Ghigo, F. Marcellini, B. Preger
    INFN/LNF, Frascati (Roma)
  • P. Craievich, M. Ferianis, M. Veronese
    ELETTRA, Basovizza, Trieste
  • A. E. Dabrowski, M. Velasco
    NU, Evanston
  • A. Ferrari
    UU/ISV, Uppsala
 
  Built at CERN by an international collaboration, the CLIC Test Facility 3 (CTF3) aims at demonstrating the feasibility of a high luminosity 3TeV e+-e- collider by the year 2010. One of the main issues to be demonstrated is the generation of a high average current (30A) high frequency (12GHz) bunched beam by means of RF manipulation. At the same time, Free Electron Lasers (FEL) are developed in several places all over the world with the aim of providing high brilliance photon sources. These machines all rely on the production of high peak current electron bunches. The required performances put high demands on the diagnostic equipment and innovative longitudinal monitors have been developed during the past years. This paper gives an overview of the longitudinal instrumentation developed at ELETTRA and CTF3, where a special effort was made in order to implement at the same time non-intercepting devices for online monitoring, and destructive diagnostics which have the advantage of providing more detailed information.