Paper |
Title |
Other Keywords |
Page |
MOO2A01 |
Physics And Diagnostics Of Laser-Plasma Accelerators
|
laser, electron, focusing, target |
11 |
|
- V. Malka
LOA, Palaiseau
|
The recent and continuing development of powerful laser systems, which can now deliver light pulses containing a few Joules of energy in pulse durations of a few tens of femto seconds, has permitted the emergence of new approaches for generating energetic particle beams. By focusing these laser pulses onto matter, extremely large electric fields can be generated, reaching the TV/m level. Such fields are 10,000 times greater than those produced in the radio-frequency cavities of conventional accelerators. As a result, the distance over which particles extracted from the target can be accelerated GeV energy range is reduced to distances on the order of millimetres. A few years ago, several experiments have shown that laser-plasma accelerators can produce electron beam with maxwellian-like distribution [1], in 2004 high-quality electron beams, with quasi-mono energetic energy distributions at the 100 MeV level [2] and recently in the GeV range using a capillary discharge [3]. These experiments were performed by focusing a single ultra short and ultra intense laser pulse into an under dense plasma. More recently we produced a high quality electron beam using two counter-propagating
|
|
|
|
WEPC11 |
FERMI@elettra Timing System: Design and Recent Synchronization Achievements
|
laser, linac, klystron, diagnostics |
334 |
|
- M. Ferianis
ELETTRA, Basovizza, Trieste
|
FERMI@elettra is the fourth generation light source under construction at Sincrotrone Trieste. Being a seeded-FEL source, the requirements for the timing system are very tight as the final goal is a stable seeding process with sub-picosecond electron bunches and seeding laser pulses. Based on demonstrated results achieved in the main laboratories worldwide active in the field, like DESY, LBNL and MIT, an hybrid timing system scheme has been proposed which is currently under development. Both "pulsed" and "continuous wave (CW)" optical timing systems are being deployed, the choice being based on the differences among the different timing system clients; a Low Level Radio Frequency processor is a "quasi-CW" client whereas the lasers and some "longitudinal" diagnostics are "time discrete" clients. In this paper the FERMI@elettra timing system and the recent advances are presented. A pulsed optical clock has been locked to an ultra stable reference; its output pulses distributed over stabilized fiber optic links. As a benchmark client, a femto-second laser oscillator has been synchronized to the optical clock testing different possible schemes.
|
|
|
|