
NETWORK ATTACHED DEVICES AT SNS*

W. Blokland and T. Shea, ORNL, Oak Ridge, TN, USA
M. Stettler, LANL, Los Alamos, NM, USA

Abstract
 The Spallation Neutron Source (SNS) diagnostic

instruments at Oak Ridge National Laboratory are based
on the Network Attached Device (NAD) concept. Each
pickup or sensor has its own resources, such as
networking, timing, data acquisition, and processing.
NADs function independently thus reducing the
brittleness inherent in tightly coupled systems.

This paper describes our implementation of the nearly
400 NADs to be deployed. The hardware consists of rack-
mounted PCs with standard motherboards and PCI data-
acquisition boards. The software suite is based on
LabVIEW and EPICS, communicating through a shared
memory interface. LabVIEW supports the agile
development demanded by modern diagnostic systems.
EPICS is the control system standard for the entire SNS
facility. Program templates and documentation tools are
available to the programmer. SNS diagnostics are
developed by a multi-laboratory partnership, including
ORNL, BNL, LANL, and LBNL. The NAD concept
proved successful during the commissioning of the SNS
front-end both at LBNL and ORNL.

INTRODUCTION
The basic idea behind a Network Attached Device is to

implement an instrument as a single networked device
with its own resources [1].

BPM N

BPM 3

BPM 2
BPM 1

Pickup

µP

timing

network

Figure 1. The NAD versus VME configuration.

For example, a typical VME implementation of a Beam
Position Monitor (BPM) handles many pickups per crate,
while the NAD implementation assigns each pickup its

own resources such as a processor, a timing decoder, and
a network interface, to make one independent device, see
Figure 1. To create a set of BPMs, the NAD
implementation makes copies of a single device. This
leads to simpler software and reduces failure interaction.
The VME implementation has to deal with managing
shared resources among the multiple BPMs. If a system is
expanded, a separate integration test is needed to check
the interaction of the larger set of modules with each other
and the shared resources. The NAD devices don’t interact
and no new testing is needed when adding NADs. A
failure or required maintenance in one component of a
VME implementation would most likely bring down all
BPMs within the crate. In the NAD implementation each
device is independent and any failure in or maintenance to
a component would only affect that one device, thus
limiting the scope of the outage. In most cases that means
that the accelerator can continue to operate.

IMPLEMENTATION
The NAD can be implemented in many ways. In its

ultimate form it would likely resemble a system-on-a-chip
with a sensor. However, to make use of the wide variety
of development and management software and low cost
computer and data-acquisition hardware, we have chosen
to base the NAD on a PC-based system. The PC-based
systems consist of standard motherboards, rack-mounted
for easy installation in the field, see Figure 2.

Figure 2. A rack mount PC.

LabVIEW is chosen as the main software development
environment operating under Windows 2000 or XP.
LabVIEW has a very well integrated visual development
environment for data-acquisition and signal processing.
Many vendors supply LabVIEW drivers with their
hardware. Combined with the SNS software suite,
described below, the SNS collaboration can efficiently
implement the NADs.

* The Spallation Neutron Source (SNS) project is a partnership of six
U.S. Department of Energy Laboratories: Argonne National
Laboratory, Brookhaven National Laboratory, Thomas Jefferson
National Accelerator Facility, Los Alamos National Laboratory,
Lawrence Berkeley National Laboratory, and Oak Ridge National
Laboratory. SNS is managed by UT-Battelle, LLC, under contract DE-
AC05-00OR22725 for the U.S. Department of Energy.

Proceedings DIPAC 2003 – Mainz, Germany

146 PM23 Posters Monday

SOFTWARE SUITE

Especially because the software development is a multi-
laboratory effort, it is important that all software is
similarly structured. This will enable the small
Diagnostics Group at SNS to maintain and upgrade
software from the other labs and also efficiently write
software for the locally implemented projects, such as the
Laserwire. A software suite provides that common
structure. The software suite supports the instantiating of
the software for a NAD to easily create a set of NADs.
Each item of the software suite is discussed in the
following sections.

EPICS IOC and Shared Memory Interface
The SNS control system uses EPICS. The NADs’ first

version of the EPICS interface was based on the ActiveX
Channel Access Server interface by LANL [2]. The
NADs switched to the full IOC when this became
available for Windows. The IOC has a more mature and
well supported code base. While early LabVIEW code
had a shared memory interface to the ActiveX interface,
the new shared memory interface connects LabVIEW
directly to the IOC. The shared memory interface and
IOC combination increased performance and reliability
over the ActiveX interface. On the LabVIEW side, a call
to write a 100 doubles to the shared memory interface,
including buffering, takes about 0.03 milliseconds on an
800Mhz P3, about 7 times faster. 100 floats generated and
communicated to a remote Channel Access client at
1000Hz take less than 5% time of the same CPU. More
performance data will be presented in [3].

Figure 3. The utility that generates a .db file.

Programming Template
The template concept implements the common software

structure for all NADs. Not only will the common
structure ease the maintenance, it also gives the
programmer a head start. A typical template implements

• multiple tasks,
• queues to synchronize and communicate between

tasks,
• state machines to organize program execution.
• a LabVIEW task to process shared memory

interface events,
• PV referencing to automatically generate db files,
• error handling,
• configuration file setup, and The shared memory interface implements functions to • user interface using the event structure. • create, find and destroy variables, The front-panel of a template example with a

continuous cycling task is shown in Figure 4. • read from and write to variables,
• set and receive events, and
• retrieve information about variables.

All these functions can be called from LabVIEW. The
events are associated with EPICS interrupts. For example,
if the LabVIEW program needs to know whether an
output PV has been set, an associated interrupt awakens a
LabVIEW task. This task then queues a message to any
other task to schedule any action that needs to be taken.
This method avoids the inefficiency of the polling. The
IOC initializes the Shared Memory Interface using the
EPICS database (.db) syntax. After LabVIEW has started
the IOC, the IOC reads in a .db file and, while creating the
PVs, also creates the shared memory variables. A
LabVIEW routine then obtains a reference for each
variable to use with the shared memory functions. This
same routine is used to automatically generate the .db file.
This way the programmer does not need detailed
knowledge about EPICS database syntax. The utility also
generates the command file to start EPICS and a table for
documentation purposes, see Figure 3. The macro
substitution feature of the database files is exploited to
keep the PV names the same in each NADs LabVIEW
program but different in each NAD’s IOC. Figure 4. Front panel of the Cycle Template VI.

Proceedings DIPAC 2003 – Mainz, Germany

Posters Monday PM23 147

Various programs using the template structure have
been made and are available as examples. A tutorial helps
the programmer understand the features of the template.
The tutorial consists of a series of programs that start out
very basic but successively add features to arrive at the
program structure of the template.

Documentation and Development Tool
Each item of the software suite is described in the Style
Guide, and this is the place for the programmer to start.
The Style Guide includes guidelines for commenting the
LabVIEW program using the built-in description fields.
The documentation and development tool VIHierarchy,
written by the author at Fermilab, uses these comments to
create a framed HTML document of the whole hierarchy
of the program, see Figure 5. VIHierarchy also provides
tools to clean up VI libraries or directories.

Figure 5. HTML page generated by VIHierarchy

Testing of NAD
The LabVIEW version of the ActiveX Channel Access

client enables the testing of the control logic of the NADS
by reading and setting the EPICS PVs on the development
computer. Clients have been implemented and are part of
the tutorial and template.

EXPERIENCE
Early versions of NADs have been implemented by

LANL and BNL in the form of Wire Scanners, Beam
Position Monitors, and Beam Current Monitors [4]. The
NADs functioned well during commissioning of the
MEBT at Berkeley and ORNL. Some downtime occurred
due to a problem with the shared timing system. The PCI
timing card was not ready yet and triggers for all BPMs
were taken from one VME crate. When this crate was
reset, because another device within the crate had to be
reset, the timers were not restored. All BPMs then failed
to trigger at the right time and did not give correct
positions. If the BPM had been fully NAD compliant and
had its own timing card, this failure mode would have
been avoided.

NADs based on the template have been running without
problems. One NAD is in use by the Accelerator Physics
group to test the speed of the Java console applications.
Others have been created for new MEBT diagnostics and
future installations, such as the D-Plate.

FUTURE
To manage the hundreds of NADs with a small

diagnostics group we are in the process of selecting a PC
management package, such as SMS or Altiris. Our
strategy is to use the Oracle database as the one
depository for all files to be installed on a NAD and to use
the PC management package to set up and maintain our
NADs. The management package will also do remote
monitoring to diagnose a NAD and perform inventory
tracking. Replacing or building the software on a NAD is
to become a push button operation.

At this point, we have used Windows 2000 or XP and
not XP embedded with a real-time extension. XP
embedded would give a smaller OS but would require the
effort of customization. We have not yet needed the
smaller OS size or the real-time attributes

A new Channel Access Client for LabVIEW is under
development to be portable among the EPICS and
LabVIEW supported operating systems.

SUMMARY
This paper presented the implementation of Network
Attached Devices at SNS. The hardware is based on rack
mounted PC (x86) motherboards. The software is based
on LabVIEW, EPICS IOC, and Windows 2000 or XP. A
software suite has been created to interface LabVIEW to
EPICS, to provide a common program structure, to help
document, and to assist development of NADs by several
laboratories. The NAD concept of using a set of
independent devices to implement an instrument system
proved itself during the commissioning of the MEBT.
Over 10 NADs have been commissioned and 30 more are
being installed for commissioning this summer.

REFERENCES
[1] T. J. Shea et al,” SNS Accelerator Diagnostics:

Progress and Challenges,” pp 512-16 PAC 2001,
Chicago, IL, USA, June 18-22, 2001.

[2] K.U. Kasemir, “ActiveX: CA client and server for
Active-X programs,” at http://www.aps.anl.gov/
epic/extensions/index.php.

[3] D. Thompson and W. Blokland, “A Shared Memory
Interface between LabVIEW and EPICS,” to be
published at ICALEPCS 2003, Gyeongju, Korea,
October 13-17, 2003.

[4] Mike Plum, “Diagnostic challenges at SNS,” this
conference, Mainz, Germany, 5-7 May 2003.

Proceedings DIPAC 2003 – Mainz, Germany

148 PM23 Posters Monday

