A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   R   S   T   U   V   W   Y    

Dehning, B.

Paper Title Page
PM12 Cavity Mode Related Wire Breaking of the SPS Wire Scanners And Loss Measurements of Wire Materials 119
 
  • F. Caspers, B. Dehning, E. Jensen, J. Koopman, J.F. Malo, F. Roncarolo
    CERN, Geneva, Switzerland
 
  During 2002 SPS running with the high intensity LHC type beam the breaking of several of the carbon wires in the wire scanners has been observed. This damage occurred with the scanners in their parking position. The observation of large changes in the wire resistivity and thermionic electron emission indicated clearly a strong RF beam induced heating and its bunch length dependence. A subsequent analysis in the laboratory, simulating the beam by a RF-powered wire, showed two main problems. The housing of the wire scanner acts as a cavity with a mode spectrum starting around 350 MHz and high impedance values around 700 MHz. The carbon wire used appears to be an excellent RF absorber and thus dissipates a significant part of the beam-induced power. The classical cavity mode technique is used to determine the complex permittivity and permeability of different samples. As a resonator, a rectangular TE01N type device is used. Different materials such as silicon carbide (SiC), carbon and quartz fibres as well as other samples were measured, since no data for these materials was available. In particular SiC properties are of interest, since SiC bulk material is often used as a microwave absorber. As a result, the carbon wire will be replaced by a SiC wire, which shows much less RF losses. Placing ferrite tiles on the inner wall of the wire scanner housing considerably reduces the impedance of the cavity modes. The reduction of the Q values of these modes is confirmed by laboratory measurements.  
PT30 Ionisation Chambers for the LHC Beam Loss Detection 245
 
  • E. Gschwendtner, R. Assmann, B. Dehning, G. Ferioli, V. Kain
    CERN, Geneva, Switzerland
 
  At the Large Hadron Collider (LHC) a beam loss system will be used to prevent and protect superconducting magnets against coil quenches and coil damages. Since the stored particle beam intensity is 8 orders of magnitude larger than the lowest quench level value particular attention is paid to the design of the secondary particle shower detectors. The foreseen ionisation chambers are optimised in geometry simulating the probable loss distribution along the magnets and convoluting the loss distribution with the secondary particle shower distributions. To reach the appropriate coverage of a particle loss and to determine the quench levels with a relative accuracy of 2 the number of the detectors and their lengths is weighted against the particle intensity density variation. In addition attention is paid to the electrical ionisation chamber signal to minimise the ion tail extension. This optimisation is based on time resolved test measurements in the PS booster. A proposal for a new ionisation chamber will be presented.