Beam stripping interactions implemented in cyclotrons with OPAL simulation code

Pedro Calvo^{† a}, Andreas Adelmann^b, Matthias Frey^b, Achim Gsell^b, Concepción Oliver^a, Jochem Snuverink^b

^a Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain ^b Paul Scherrer Institut (PSI), Villigen, Switzerland

Abstract

Beam transmission optimization and losses characterization, where beam stripping interactions are a key issue, play an important role in the design and operation of compact cyclotrons. A beam stripping model has been implemented in the three-dimensional object-oriented parallel code OPAL-CYCL, a flavour of the OPAL framework. The model includes Monte Carlo methods for interaction with residual gas and dissociation by electromagnetic stripping. The model has been verified with theoretical models and it has been applied to the AMIT cyclotron according to design conditions.

0.1

0.09

0.08

0.07

0.06

	AM	IT cyclotron	Beam Stripping in OPAL	
Ger	neral	Magnet		\blacktriangleright Beam stripping implemented for $\mathrm{OPAL}\text{-}\mathrm{CYCL} \longrightarrow New$ ParticleM
Energy Current	$> 8.5 \mathrm{MeV}$ 10 $\mu\mathrm{A}$	Type Configuration	Low T_c superconductoronWarm ironmaterialNbTiId4 T	Input parameters: Pressure and temperature (uniform and constant) =
RF s	ystem	Central field		Cross section of the processes in function of energy
Configuration	One 180° Dee	Extraction		Residual gas considerer as ideal gas
voltage	60 KV	Extraction system Position	Stripping foil at 110 mm External	\blacktriangleright Residual gas composition \longrightarrow air
lon s	lon source		Nitrogen gas $\rightarrow^{11}C$	
Type Ions	Internal PIG H ⁻	Target	¹⁸ O enriched water \rightarrow ¹⁸ F	Beam fraction lost is evaluated individually for each particle in each st Carlo method

PAUL SCHERRER INSTITUT

latterInteraction

 \implies Gas density

The high magnetic field required for the compact design of the AMIT cyclotron makes the classical cyclotron choice to be considerably less complicated than the corresponding isochronous solution. A combination of high magnetic field and a high-alternating electric field accelerates the charged particles from the central axis, where they are injected, in an outward spiralling path. The magnetic field decreases along the radius of the orbit providing radial and axial stability of the beam (weak focusing). The oscillation frequency of the gap voltage remains constant while the ion orbital frequency decreases due to the relativistic mass increase with the energy and to the radial decrease of the magnetic field.

- tep through a Monte
- Secondary ions produced could be traced

The implementation validated performing simulations of a beam of H⁻ in a large drift space

Electromagnetic stripping

B = 2.3 TE = 100 MeV $f_L^{Theory} = 0.571 \text{ m}^{-1}$ $f_L^{Sim} = 0.570 (10) \text{ m}^{-1}$

AMIT simulations

Beam Stripping

Particles incident on a homogeneous medium \longrightarrow Mean free path, $\lambda \longrightarrow$ Statistic cumulative interaction probability

$$P(x) = 1 - e^{-x/\lambda}$$

Electron detachment/Capture interaction processes

Residual gas interaction

The vacuum conditions in compact cyclotrons are of special relevance. Vacuum level expected in AMIT cyclotron $\longrightarrow 10^{-5} - 10^{-4}$ mbar

Electromagnetic stripping

Electrons and nucleus are bent in opposite directions under a magnetic field

The magnetic field in an accelerator produces an electric field according to Lorentz transformation: $E = \gamma \beta c B$.

 $\lambda = \beta c \gamma \tau$

 $\tau = \frac{A_1}{E} \cdot \exp\left(\frac{A_2}{E}\right)$ $A_1 = 3.073(10) \cdot 10^{-6} \text{ s V/m}$ $A_2 = 4.414(10) \cdot 10^9 \text{ V/m}$

Acknowledgements

This work was partially supported by the computing facilities of Extremadura Research Centre for Advanced Technologies (CETA-CIEMAT), funded by the European Regional Development Fund (ERDF). CETA-CIEMAT belongs to CIEMAT and the Government of Spain.