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Abstract 
Accelerator Mass Spectrometry (AMS) is a powerful 

method for separating rare isotopes and electrostatic type 
tandem accelerators have been widely used. At 
SungKyunKwan University, we are developing AMS that 
can be used in a small space with higher resolution based 
on cyclotron. In contrast to the cyclotron used in 
conventional PET or proton therapy, the cyclotron-based 
AMS is characterized by high turn number and low dee 
voltage for high resolution. It is designed to accelerate not 
only 14C but also 13C or 12C. The AMS cyclotron RF control 
model has nonlinear characteristics due to the variable 
beam loading effect of the acceleration of various particles 
and injected sample amounts. In this work, we proposed an 
AMS RF control system based on reinforcement learning. 
The proposed reinforcement learning finds the target 
control value in response to the environment through the 
learning process. We have designed a reinforcement 
learning based controller with RF system as an 
environment and verified the reinforcement learning based 
controller designed through the modelled cavity. 

INTRODUCTION 
Accelerator mass spectrometry is an instrument for 

analysing the mass of radioactive isotopes. It accelerates 
various ions such as 10Be, 14C, 28Al, 38Cl, 41Ca, and 129I and 
it is used in clinical experiments. AMS has higher 
resolution than conventional Mass Spectrometry. For 
general mass spectrometry, it has 10 - 12 parts per trillion 
(ppt) level sensitivity, but for accelerator mass 
spectrometer it has a high sensitivity of 10 - 15 ppt and 
tandem accelerators type AMS has been widely developed. 
However, cyclotron-based AMS is still under study 
because of its potential for miniaturization and efficiency 
compared to existing tandem accelerators [1, 2]. 

Unlike conventional cyclotron used for PET or proton 
therapy, AMS cyclotron has relatively low voltage and high 
rotation number for resolution. There is also the feature of 
accelerating various kinds of particles. This feature leads 
to non-linearity in control and interferes with performing 
precise beam and RF control. The external environment of 
the accelerator is continuously changed according to the 
type of particles and the quantity of the incident sample. In 
order to solve such a problem, it is inappropriate as a 
control system based on the existing linear section. 

Reinforcement learning is one of the methods of 
machine learning such as Supervised Learning and 

unsupervised learning. It is a way to improve the behaviour 
through reward based on mutual relation of environment. 
Reinforcement learning does not require prior knowledge 
of the environment and is used for robots and games 
because it guarantees learning and adaptability [3]. 
In this work, reinforcement learning based RF control 
system was developed. From the viewpoint of 
reinforcement learning structure, we can redefine the 
controller as an agent and the cyclotron control variable as 
environment and to interconnect environment between 
agent, state, action and reward should be defined as shown 
in Fig. 1.  

Figure 1: Reinforcement Learning based AMS control 
block diagram. 

SYSTEM DESIGN 
In AMS RF cavity, the electric field from rf source can 

be calculated by following formula.  𝐸௉௄ ൌ ĸ௘ඥ𝑃௧ , 

where ĸ௘  is coefficient which is determined using 
computer code and 𝑃௧  is transmitted power. 𝑃௧  is 
changed by cavity coupling coefficient and resonant-
frequency mismatch and is related to beam loading effect 
and reflected power. Those parameters are used to describe 
state as follows:  

{Pf,Pr ,Vexr,Vbias} , 
where Pf is forward power from rf source, Pr is reflected 
power and Vexr , Vbias is extraction and biases voltage, which 
effect injection beam quality from ion source, respectively. 

To measure forward and reflected power, ZFBDC20-
61HP+ bi directional coupler was installed between cavity 
and RF amp and NI-cRio was communicated with ion 
source process controller station. The action space for the 
RF controller can be expressed by: 

A = {a| -Δf ,0, Δf} , 
 ___________________________________________  
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where Δf is the Increment of RF input frequency. Since we 
use a relatively low frequency, we choose an AFG 3021 
function generator as an RF input and ACTION is 
implemented by remote control. Agent’s actions are 
evaluated by the reward: 

Reward= {+1, if Pr t+1 > Pr t and -1, if Pr t+1 ≤ Pr t } , 
where Pr t+1, Pr t are reflected power at two successive time 
steps. Agent will get positive reward when reflected power 
decrease. In other cases, it gets a negative reward.  

SOFTWARE DEVELOPMENT  
AMS controller was implemented by NI CompactRIO 

systems. By using the Scan Engine, we programmed Actor-
critic structure and data communication with other AMS 
devices for data acquisition and monitoring. CompactRIO 
consist of CPU module, input output module and 
communication module. The devices such as signal 
generator and ion source were connected through RS 
232,485 serial communications. 

In AMS controller, we programmed Actor-critic method 
[4]. Actor-Critic is type of reinforcement learning and also 
time difference method that can be used directly without an 
environment model, and has the advantage of doing the 
learning directly with raw experience. 

In Actor-Critic structure, Both Actor and Critic are 
parameterized with neural networks and those function 
determines whether to pass through or update the neural 
network through Boolean input.  

In the former case, the input data passes through each 
layer of the neural network. At this time, the weight and 
bias values remain at their stored values.  

In the update process, the neural network calculates the 
gradient of the weight and bias according to the input 
through backpropagation, as shown in Fig. 2. 

The calculated gradient is used as input to the ADAM 
optimizer [5] and updates the weights and biases. The 
weights and biases of neural networks that make up actors 
and critics are initialized before training. We performed the 
initialization using a He uniform variance scaling 
initializer. This is accomplished using a uniform white 
noise function with a square root of 6 / (number of layer 
inputs), as shown Fig. 3.  

Actor and Critic perform optimization work by using 
ADAM Optimizer to reduce loss function through training. 
The ADAM optimizer is a kind of Stochastic Gradient 
Descent that allows you to quickly find the optimal value 
using only a few data when training. Figure 4 shows the 
loss function reduction during training of actors and critics. 

Verification of the A2C-based resonant controller was 
carried out through the forward and reflected power. A2C 
controller was simulated when the resonance point did not 
change at 5.8 MHz to verify whether the A2C model can 
track the resonance point and confirmed that it converged 
to the 5.8 MHz band after the initial search, as shown 
Fig. 5. 

 
 

 
Figure 2: Neural network block diagram. 

 

 
Figure 3: He uniform variance scaling initializer. 

 
Figure 4: Actor and critic loss function test in training. 
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Figure 5: A2C Resonance controller learning process at 
5.8 MHz constant resonance point. 

The resonance point variation model was also trained by 
adding a sinusoidal function with an amplitude of 1.5 kHz 
to the resonance point, as shown Fig. 6. 

 
Figure 6: A2C Resonance controller learning process in 
resonance point shift model. 

DISCUSSION 
A2C based AMS control system design and simulation 

was performed in this paper. This method is currently being 
tested with the ion source controller hardware information. 
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