
REACT AUTOMATION STUDIO: A NEW FACE TO CONTROL LARGE
SCIENTIFIC EQUIPMENT

W. D. Duckitt, J. K. Abraham, iThemba LABS, Somerset West, South Africa

Abstract
A new software platform to enable the control of large

scientific equipment through EPICS has been designed. The
system implements a modern tool chain with a React front-
end and a PyEpics back-end as a progressive web applica-
tion. This enables efficient and responsive cross platform
and cross device operation. A general overview of React
Automation Studio as well as the system architecture, imple-
mentation at iThemba LABS, community involvement and
future plans for the system is presented.

INTRODUCTION
Mobile phone and tablet technology have driven the need

for cross platform and cross device applications that deliver
an instantaneous user experience.

We were eager to be a part of this technical revolution,
yet the tools available to us in the EPICS [1] open source
community could not enable us to develop mobile based
user interfaces (UI) for EPICS.

Having upgraded many of our systems to EPICS [1–4, 6]
control and having developed several state-of-the-art EPICS-
EtherCAT [1–3,6, 7] control systems with Control Systems
Studio (CS-Studio) [2, 3, 5, 6] operator UIs, we were poised
with the problem of converting the remaining software sys-
tems for the rest of the facility to a similar standard.

We chose however to first investigate an alternative that
involved creating a progressive web application (PWA) [8]
framework for EPICS. The fruits of this investigation have
led to the first release of a software framework to allow
real-time, cross platform and cross device responsive UI
creation for EPICS. This framework has been called React
Automation Studio.

A general overview of React Automation Studio as well as
the system architecture, implementation at iThemba LABS,
community involvement and future plans for the system is
presented in the sections below.

SYSTEM REQUIREMENTS
The goal of this first release was to a develop a container-

ised system consisting of a back-end to serve EPICS vari-
ables to a PWA front-end that could run cross platform and
cross device.

For the back-end it was critical to incorporate user au-
thentication and authorisation, whilst ensuring that it would
not be necessary to manually declare process variables that
needed to be served to the client. In other words the client
must request the variables needed, and the back-end server
should dynamically connect and relay the process variable
meta and live data to the client.

For the client, the goal was to place a data connection
wrapper on freely available React components and to build
in the features for macro replacement of variable and sys-
tem names. This was to allow for the creation of reusable
operator interfaces to implement alarm handling and to add
in diagnostic ability such as a probe interface where further
information about the process variable is displayed.

Finally, the system should be sufficiently documented with
use cases, examples and a front-end implementation guide.

Each of the goals have been achieved and the system
overview is given below.

SYSTEM OVERVIEW
React Automation Studio has been containerised with

Docker [9] and version controlled as a mono-repository us-
ing Git [10].

Each of the Docker containers are deployed as micro ser-
vices and environment variables can be configured to deploy
the system on different ports, to enable user authentication
and authorisation or to serve the application on a unique
URL or on the localhost. Separate Docker commands exist
to load the development and production versions. These con-
tainerised environments allow for the precise versioning of
packages used and prevents deployment dependency issues.

The software stack for React Automation Studio is shown
in Fig. 1 and an overview of the system components are
outlined below:

pvServer
We needed to develop a back-end server to relay the pro-

cess variable (PV) data to the client. We initially evaluated
a JavaScript back-end using a JavaScript EPICS channel
access (CA) module, but we found the support and develop-
ment to be limited and it also faced stability issues.

The chosen alternative is a Python [11] back-end which
uses the well supported and well maintained PyEpics [12]
CA module.

The resulting micro-service is the Python process variable
server (pvServer). It is layered on the Flask [13] and Flask-
Socket-IO [14] web application frameworks to serve the
EPICS process variables to clients.

Communication between clients and the pvServer occurs
between the data connection wrapper in the client compo-
nents and the pvServer as follows:

The client initially makes a Socket-IO [15] connection to
the pvServer. Depending on whether or not authentication
is enabled the client will first be authenticated, and then the
data connection wrapper will emit Socket-IO events to the
pvServer requesting access to the EPICS variable.

Depending on the clients access rights, access is either de-
nied or the socket connection is placed in a Socket-IO room

22nd Int. Conf. on Cyclotrons and their Applications Cyclotrons2019, Cape Town, South Africa JACoW Publishing
ISBN: 978-3-95450-205-9 doi:10.18429/JACoW-Cyclotrons2019-THA03

02 Cyclotron Technology
THA03

285

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I



EPICS Base

Demo EPICS IOCs

PyEpics Channel Access

Flask-SocketIO

pvServer

Flask

Socket.IO

React Frontend

Material-UI React-vis

React

Express Node

Bcrypt

Access Rights and Administration

Socket.IO

Style Guide

Material-UI React-vis

React

Express Node

React Styleguidedist

D
o

c
k
e

r
D

o
c
k
e

r
D

o
c
k
e

r
D

o
c
k
e

r
D

o
c
k
e

r

synApps

json

Figure 1: The React Automation Studio software stack.

with read-only or read-write privileges but with the same
name as the PV. EPICS CA to the required process variables
are established and the PyEpics PV is stored in a list, the con-
nection and value change callbacks of the PyEpics CA are
used to emit meta-data, connection status and value changes
to the read-only and read-write rooms. The PV name is used
as the event name.

In the data connection layer of the clients components,
an event listener that is tied to the PV name is registered
on the Socket-IO connection for each instantiation of the
component. This allows efficient asynchronous updates of
each listening component when the pvServer emits the PV’s
event update.

The only difference between the read-only and read-write
rooms is that the write-access field of the meta-data has been
changed to read-only based on the access rights and that for
a read-write room the write access field is inherited from
security rights defined by the EPICS IOC or gateway.

Similarly when writing to an EPICS variable, then de-
pending on the access rights, the client is either granted or
denied permission to write to the variable.

React Front-end
React [16] was chosen to develop the front-end for the

PWA as it enabled the development of the front-end in a
single language, i.e., JavaScript [17], as opposed to conven-
tional web development in HTML, JavaScript and CSS. The
UI interfaces that we have created are highly responsive and

offer a real-time experience as is shown in the example of
a mobile view in Fig. 2 and a desktop beam line control
system in Fig. 3.

Figure 2: An example of a React Automation Studio mobile
layout.

We have integrated selected components from the
Material-UI [18] React component framework and the React-
vis [19] graphing framework with our system to create user
interfaces with the same features that we use in our current
CS-Studio operator interfaces. These components have been
integrated with a data connection layer which handles input
and output, meta-data for labels, limits, precision, alarm
sensitivity and initialisation from the pvServer.

Some components can handle multiple PVs such as graphs
or single PVs i.e. text inputs. For each of the components,
the PV’s name can be declared using macros. The macros
are replaced at component instantiation. This allows the
design of complex user interfaces that can be reused by
simply grouping the components and changing the global
macro to point to another system.

The data connection layer can currently support EPICS
process variables by adding "pva://" and local variables by
adding "loc://" as prefixes to the component pv names. In
the future, data connections to process variables of various
protocols will be added, as well as new prefixes to indicate
connection to these protocols.

22nd Int. Conf. on Cyclotrons and their Applications Cyclotrons2019, Cape Town, South Africa JACoW Publishing
ISBN: 978-3-95450-205-9 doi:10.18429/JACoW-Cyclotrons2019-THA03

THA03
286

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I

02 Cyclotron Technology



Figure 3: An example of a wide screen operator display for the control of a beam line.

Demo EPICS IOC
The framework comes with a containerised demonstration

IOC that enables the front-end demos to connect in real-time
to a live system. The default EPICS port has been changed
for the demo IOC to prevent multiple instances on different
machines from influencing one another.

Access Rights and Administration
The URL, protocol selection for HTTPS or HTTP , au-

thentication and server ports are controlled through the en-
vironment variables.

If React Automation Studio is installed on the localhost
then there is no need to enable authentication as the host
authentication system will protect access.

In this release, and with authentication enabled, the user
name and password are managed through an administra-
tor Docker environment through the command line. Pass-
words are stored on the server in encrypted format using
Bcrypt [20]. In future releases this may be replaced by a
web based administration page. The default authentication
procedure can easily be modified to suit a different envi-
ronment and point to an authentication server. The client
is kept authenticated using an encrypted Jason Web Token
(JWT) [21]. This JWT is used to check authorisation and
access rights for every PV request and write. If the JWT is
invalidated by the server then the user will be required to
login.

Access rights can be controlled though a JSON file which
contains user access groups and rules for defining PV access
using regular expressions in the same way that the EPICS
Gateway [22] access is defined. All of the components in

React Automation studio currently indicate access rights to
the PV.

Style Guide
A lot of effort was put into the documentation and a style

guide based on React Styleguidedist [23] is used as the help
function and to document the use of all the components from
the source files. The current style guide is also interactive
with a demo IOC. The properties of each of the components
are documented and examples of their usage are shown.

IMPLEMENTATION AT iThemba LABS

React Automation Studio is currently being used as the
control system front-end and overview screens for the Low
Energy Radioactive Ion Beam (LERIB) [24] demonstra-
tor which is part of the new South African Isotope Facility
(SAIF) project. For LERIB it is used to control the motion
control, vacuum systems, actuator systems and to display the
status of the machine safety interlocking system. In total the
various UIs currently connect up to 648 unique PVs from
the same pvServer from multiple IOCs.

At the main separated sector cyclotron (SSC) complex,
we have upgraded the harp beam diagnostics and Faraday
cup front-end with a React Automation Studio front-end that
controls all the harps and Faraday cups. For this system a
total of 1683 unique process variables are connected to the
UI from the same pvServer to multiple IOCs located on site.

We have also developed various engineering and mobile
displays for other projects on site.

22nd Int. Conf. on Cyclotrons and their Applications Cyclotrons2019, Cape Town, South Africa JACoW Publishing
ISBN: 978-3-95450-205-9 doi:10.18429/JACoW-Cyclotrons2019-THA03

02 Cyclotron Technology
THA03

287

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I



FUTURE PLANS AND COMMUNITY
INVOLVEMENT

We are in the process of open-sourcing React Automation
Studio and we encourage the community to get involved and
collaborate with us on this project. The main release of React
Automation Studio will contain all examples, source code
and a style guide for implementation. We will also release
boiler-plate example repositories that will contain simplified
examples and staging areas that can be used by other labora-
tories to develop their own front-ends. We encourage inter-
ested persons to contact us via rasadmin@tlabs.ac.za.

In future releases we also hope to add in an interface to
archived data, a dedicated alarm handler and a database
abstraction layer to access saved settings.

CONCLUSION
iThemba LABS has successfully designed a new software

platform to enable the control of large scientific equipment
through EPICS via PWAs. The system is cross device and
cross platform compatible. The operational readiness and
stability of this software has been demonstrated and we
encourage the EPICS community to test, evaluate and con-
tribute to React Automation Studio.

REFERENCES
[1] EPICS, https://epics.anl.gov/

[2] W. D. Duckitt, J. K. Abraham, J. L. Conradie, M. J. Van Niek-
erk, and T. R. Niesler, “A new digital low-level RF control
system for cyclotrons”, in Proc. 21th Int. Conf. on Cyclotrons
and their Applications (Cyclotrons’16), Zurich, Switzerland,
Sep. 2016, pp. 258–262.
doi:10.18429/JACoW-Cyclotrons2016-WEB01

[3] W. D. Duckitt, J. L. Conradie, M. J. van Niekerk, J. K. Abra-
ham, and T. R. Niesler, “The design and implementation
of a broadband digital low-level RF control system for the
cyclotron accelerators at iThemba LABS”, Nucl. Instrum.
Methods Phys. Res., Sect. A, vol. 895, Jul. 2018, pp. 1-9, ISSN
0168-9002. doi.org/10.1016/j.nima.2018.03.064

[4] I. H. Kohler et al., “Progress in the conversion of the in-house
developed control system to EPICS and related technologies
at iThemba LABS”, in Proc. 13th Int. Conf. on Accelerator
and Large Experimental Control Systems (ICALEPCS’11),
Grenoble, France, Oct. 2011, paper MOPMS013, pp. 347–
350.

[5] Control System Studio, http://controlsystemstudio.
org/

[6] J. K. Abraham and W. D. Duckitt, “Integration of EtherCAT
hardware into the EPICS based distributed control system
at iThemba LABS”, presented at the 22nd Int. Conf. on Cy-
clotrons and their Applications (Cyclotrons’19), Cape Town,
South Africa, Sep. 2019, paper MOP015, this conference.

[7] R. Mercado, I. J. Gillingham, J. Rowland, and K. G. Wilkin-
son, “Integrating EtherCAT based IO into EPICS at Dia-
mond”, in Proc. 13th Int. Conf. on Accelerator and Large
Experimental Control Systems (ICALEPCS’11), Grenoble,
France, Oct. 2011, paper WEMAU004, pp. 662–665.

[8] Progressive Web App https://developers.google.
com/web/progressive-web-apps/

[9] Docker, https://www.docker.com/

[10] Git, https://git-scm.com/

[11] Python, https://www.python.org/

[12] PyEpics, https://cars9.uchicago.edu/software/
python/pyepics3/

[13] Flask, https://palletsprojects.com/p/flask/

[14] Flask-SocketIO,
https://flask-socketio.readthedocs.io/en/
latest/

[15] Socket.Io, https://socket.io/

[16] React, https://reactjs.org/

[17] JavaScript, https://developer.mozilla.org/en-US/
docs/Web/JavaScript

[18] Material-UI, https://material-ui.com/

[19] React-Vis, https://uber.github.io/react-vis/

[20] Bcrypt, https://pypi.org/project/bcrypt/

[21] Jason Web Token,
https://tools.ietf.org/html/rfc7519

[22] EPICS Gateway, https://epics.anl.gov/extensions/
gateway/index.php

[23] React Styleguidedist,
https://github.com/styleguidist/
react-styleguidist

[24] J. L. Conradie et al., “The South African Isotope Facility”,
in Proc. 9th Int. Particle Accelerator Conf. (IPAC’18), Van-
couver, Canada, Apr.-May 2018, pp. 1240–1243.
doi:10.18429/JACoW-IPAC2018-TUZGBF4

22nd Int. Conf. on Cyclotrons and their Applications Cyclotrons2019, Cape Town, South Africa JACoW Publishing
ISBN: 978-3-95450-205-9 doi:10.18429/JACoW-Cyclotrons2019-THA03

THA03
288

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I

02 Cyclotron Technology


