

Studies and Upgrades on the cyclotron C70 ARRONAX

Freddy Poirier (Arronax/CNRS)

On behalf of the accelerator group S. Girault, F.Bulteau Harel, J.B. Etienne, X.Goiziou, F. Gomez, A.Herbert, L.Lamouric, D. Poyac, H.Trichet, C.Huet, E.Mace

ARRONAX: Accelerator for Research in Radiochemistry and Oncology at Nantes Atlantique.

Tuesday, the 12th of September 2016

CYCL13: "On-Going operations with the cyclotron C70", MOPPT010

Proton cyclotrons and linacs for radio-isotopes

(tentative map)

OR CERTIFICATIO

Characteristics

- C70 Cyclotron build by IBA:
 - Isochron cyclotron with 4 sectors
 - RF: 30.45 MHz
 - Acceleration Voltage: 65 kV
 - Max magn. field : 1.6T
 - Max kinetic energy/n: 30-70 MeV
 - Normalised emittance before extraction: $\gamma \epsilon_x = 4\pi$ mm mrad (simulation)
- Main additional elements:
 - 2 Multiparticle sources.
 - Multicusp (H-,D-) with multiple magnets, 5mA max.
 - Supernanogan ECR ion source (He2+,HH+)
 - Injection: Series of magnetic elements (glaser, steerer, quad.) on the top of the cyclotron to adapt the beam to the entrance of the cyclotron, and finally the spiral inflector

Beamlines

Operationnal use

• Large range of intensity and energy:

- 7 orders of magnitude of intensity
 - Runs for Radio-isotopes at high intensity and high integrated intensity
 - R&D runs \rightarrow Precisions in operation
- Several beamlines in use and bunches frequencies variation not included here

Operations

• RF use:

- 2015 : 4400 hours
- 2016 (projected): similar

Transmission rates

Particles	Estimated Intensity in cyclotron [µA]	Transmission rate (End- <u>of_line</u> /injection)
H+	252	43%
D+	64	37%
He2+	26.6	10%

Dual mode operation with protons:

- Here stable run over 98 hours
- ✓ <I>=101.5 eµA, σ_{<i>}=5.4 eµA
- Breakdowns = 1.8% of the overall time
- ✓ Vacuum in the center of the machine =4x10⁷ mbar
- ✓ Neutral current (H⁰) = 9eµA in 2014 (18µA in 2012)

Now running at 150uA on target

Machine studies

- Twofolds, mostly driven by users needs
 - Users wants high current,
 - Mitigate potential target damages (beamline also)
 - Users wants to have lower intensity/more precise beam in a short time
- The studies spans over:
 - Source studies
 - End-of-line beam characteristics
 - Mapping of the magnets
 - Beamlines beam dynamics studies including quadscan (towards emittance measurements)

Studies at low intensity (<1uA)

Here for our multicusp H-/D- source

Intensity from the source follows a specific pattern (peak, drop and ramp-up) before stabilisation which occurs after several tens of minutes:

- Impact on how early we can do a stable beam
- Impact on how soon we can perform maintenance (exponential decrease kicks-in)

→Adaptation of source filament use (confirmed also with end-of-line users measurements)

Beam stability at low current 20 pA (Dosion – LPC Caen/Arronax team): Intensity Geometry

 \rightarrow 40 µm beam geometric instability: recipe in use validated for this specific use (with strategy of beam blow-up in injection)

Studies at high intensity (>10uA)

Are the settings in the machine adequate?

- 3 Compensation coils in addition to the main coil
- Mapping of the extracted intensity from the machine has shown several region to use/avoid, for the accelerator magnets setting:
 - Included check of isochronicity
 - On-going work for all magnets, history and pilots technics
 - On operation, setting modification accordingly

Studies at high intensity(>10uA)

- Are the settings in the beamlines adequate?
 - Quad-scan to check the beam dimension and setting of the quads and losses along the beamlines
- Can the beam characteristics be tackled? Emittance?

Using a simulation model, and a technique close to single wire but with collimators, first measurements of the emittance were performed at Arronax:

Indicated us that we can approach the emittance measurements without new tools:

- It takes time though and needs dedicated scans

On-going Developments

- New upgrade on the control server → done
- Collaboration with IBA for new collimators
- Beam loss monitors (BLM)
 - 1 running prototype
 - EPICS updated system thanks to Master students and iThemba
- Alpha pulsing: on-going work (next slide)
- Parallel data acquisition system for cyclotron
 → done
- For the future:
 - extension for several BLM
 - Beamline modification
 - Extension of our EPICS network to support beam and technical diagnostics

BLM

Extension of network

Pulsation

- Goal: modify the inter-bunch space from 32.8 ns to a few millisec
- Initial system built by IBA.
 - Based on a 3kV chopper in the injection and a 50kV deflector in one beamline
- System adapted to new users specification: \rightarrow bunch train
 - Drive the chopper to allow start/stop modes
 - Modify the electronics/software
 - Adapted for all particles

A.Leateron, E. Mace + previous M2 students

Users also want to have trains with only 32.8 ns inter-bunch time \rightarrow Need to change the power system of the chopper: Solid-state?

Conclusion

- Arronax C70 is up and running:
 - ~5 years of experience
 - Machine is used for very various and wide range of runs/parameters
 - Success in responding to the users needs (happy?)
- Maintenance and interventions are high:
 - New CMMS (maint. Management software) used \rightarrow better tracking
 - 150 interventions/year
 - Specific applied maintenance technics due to activation in place
- Several developments are necessary and being done:
 - Tools and techniques for maintenance have to be developped
 - Operation:
 - Implementation of a foundation to support EPICS software based tools
 - Beam diagnostics are highly needed
 - Looking for specialist and collaborations
 - Thorough simulations of accelerator/beamlines are also needed:
 - Help to grasp the impact of the parameters
 - Help to refine the technics (emittance measurements, ballistic beam-based alignment?)

. Thank you!

Several of these projects are supported in part by the "Agence National de la Recherche", called "Investissements d'Avenir", Equipex ArronaxPlus n°ANR-11-EQPX-0004

ARRONAX Activities

- A tool to produce <u>radionucleides</u> for research in <u>nuclear medecine</u>
 - Imaging: β + radioelements for PET (ex: ⁸²Sr/⁸²Rb, ^{44m/44}Sc, ⁵²Fe, ⁶⁴Cu ...)
 - Therapy: α immunotherapy (²¹¹At \rightarrow preclinic phase), β⁻ radioelements : ⁶⁴Cu (preclinic phase), ⁴⁷Sc

YARRONAX

ARRONAX Activities

- A tool to produce <u>radionucleides</u> for research in <u>nuclear medecine</u>
 - Imaging: β + radioelements for PET (ex: ⁸²Sr/⁸²Rb, ^{44m/44}Sc, ⁵²Fe, ⁶⁴Cu ...)
 - Therapy: α immunotherapy (²¹¹At), β⁻radioelements : ⁶⁷Cu, ⁴⁷Sc
- A tool for radiochimistry & radiobiology research
 - specifically alpha radiolyse of water (eg nuclear waste storage).
 - Radiobiology with characterisation of dosimetry tools and living cells (with GANIL, ICO, INFN)

ARRONAX Activities

- A tool to produce <u>radionucleides</u> for research in <u>nuclear medecine</u>
 - Imaging: β + radioelements for PET (ex: ⁸²Sr/⁸²Rb, ^{44m/44}Sc, ⁵²Fe, ⁶⁴Cu ...)
 - Therapy: α immunotherapy (²¹¹At), β -radioelements : ⁶⁷Cu, ⁴⁷Sc
- A tool for radiochimistry/radiobiology research
 - specifically alpha radiolyse of water (eg nuclear waste storage)
 - radiobiology

ARRONAX

- A tool for physics reasearch
 - Particularly studies of material under irradiation
 - Development of detection system
 - Measurements of nuclear data

PIXE/PIGE - Particle Induced X-ray Emission

- Non destructive Caracterisation Method of multielements material, quantitative
- Dvt of mesuring benches
- (~nA)

Experiment « Stacked Foils » - Sc44 Cross section measurements: example from 9 to 35 MeV- (100 nA)

- A tool to produce <u>radionucleides</u> for research in <u>nuclear medecine</u>
 - Imaging: β + radioelements for PET (ex: ⁸²Sr/⁸²Rb, ^{44m/44}Sc, ⁵²Fe, ⁶⁴Cu ...)
 - Therapy: α immunotherapy (²¹¹At), β -radioelements : ⁶⁷Cu, ⁴⁷Sc
- A tool for radiochimistry/radiobiology research
 - specifically alpha radiolyse of water (eg nuclear waste storage)
 - radiobiology

ARRONAX

- A tool for physics reasearch
 - Particularly studies of material under irradiation
 - Development of detection system
 - Measurements of nuclear data
- A tool for training and education
 - University of Nantes
 - École des mines of Nantes
 - CHU (accademic hospital) of Nantes
 - Permanent and dedicated trainings
- An industrial production site for medical needs

Simulation

- Development of simulation with G4beamline, Astra & Transport:
 - General simulation studies
 - Support and confirm Beam transport strategies
 - Benchmark/Confirmation of beam characteristics (beam size, particles losses, emittance,...) + users are in demand of this
 - Extrapolation to high current technique?

particles losses along the beamline

Details close to beamline end

Works from students, D.G. rab. B. D. Cola X

Ms3019001

Qualité FNOR CERTIFICATION

Cyclotron initial alpha pulsing

- <u>Alpha pulsing</u>: Deflectors for inter-bunch time modification (He2+/2011-12):
 - Periodic Deflector on the beamline 50 kV @ $f_{cvclo}/20$
 - Chopper (Deflector) in the injection timed to the period. def.

ARRONAX

Diagnostics I

The main diagnostics are:

ARRONAX

- <u>Current measurements (I_{mean})</u>:
 - On the 4 individual fingers of the collimators
 - \rightarrow aperture from 10 to 30 mm limiting the transverse size right at exit of collimators,
 - Faraday cups:

Water cooled layers of titanium /aluminium

15kW max (i.e ~210µA at 70MeV)

- <u>Beam dumps</u> combined or not with a current integrator (at very low current)

- Profilers: measures the beam density

- <u>Alumina foils</u>: or thin film foils for location and size measurements at end of line

Diagnostics II (low intensity)

Profiler NEC 80 (83):

- Installed downstream a collimator
- A single wire, frequency 18 Hz (19Hz)
- Helicoidal Radius =
 2.7 cm (5.31)
- Limit (theo.)=150 μA for a 10 mm beam

Alumina foil (AlO3) - thickness 1 mm:

- Installed outside the line, downstream the exit thin kapton (75 $\mu m)$ window
- Check of the center and beam size
- ~1nA <I_{mov}<~150 nA for protons and alpha
- Vidikon Camera (radiation hard)
- → Off-line analysis code is developed in GMO, based a Matlab tool from LAL.

