

Canada's national laboratory for particle and nuclear physics and accelerator-based science

RECENT IMPROVEMENTS IN BEAM DELIVERY WITH THE TRIUMF'S 500 MeV CYCLOTRON

Yuri Bylinski

Accelerator Systems Department Head, On behalf of the Cyclotron Development Team

- Introduction
- Ion Source & Injection
- Intensity Stabilization
- Sr-82 Isotopes Production
- Extraction Foils
- Beam Losses
- Beam Rastering
- Outlook

TRIUMF Facilities Layout

Expanded RIB – TRIUMF's flagship program

Three simultaneous beams

- increased number of hours delivered per year
- new beam species
- increased beam
- development capabilities

ARIEL-I (complete)

- Electron linac
- Buildings

ARIEL-II (2016-2021)

- Beta-NMR
- Photo-fission
- CANREB
- BL4N
- High Power Photo-fission

3 Simultaneous Proton Beams:

BL1A: 120 μA @ 480 MeV or	Molecular & Materials Science, µSR
BL1B: few nA @ 200-480MeV	Proton & Neutron Irradiations
BL2A: 100 μA @ 480 MeV	ISAC (Nuclear & Astro-physics)
BL2C4: 100 μA @ 100 MeV or	Medical Isotopes (Sr-82)
BL2C1: few nA @ 116 MeV or	Proton & Neutron Irradiations
BL2C1: few pA @ 70 MeV	Proton Therapy (Ocular Melanoma)

Cyclotron High Intensity Capability

13-Sep-16

Cyclotrons-2016

5

Cyclotron Annual Performance: – 10 years

Cyclotron Availability (%) 2006-2016

Annual Delivered Hours 2006 - 2015 6000 Cyclotron BL1A BL2C4 5000 BL2A BL2C1 BL1B 4000 SUDD 3000 2000 1000 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Year

Availability – 5000+ hours Reliability – 90% Charge – 900 mA·hours

Annual Delivered Charge 2006 - 2015

- Increase reliability (>90%)
- Increase uptime (>5500 hours/year)
- Increase total intensity to 400 μ A
- Increase beam stability
- Reduce beam interruptions (<50 per week)
- Reduce activation and contamination
- Reduce maintenance overhead

- Powerful and versatile H- source test stand established for hardware and beam studies:
 - Filament lifetime studies: 3 weeks => 4 months
 - High performance demonstration: 25 mA cw
 - New efficient source development for 500 MeV cyclotron (1 mA in 2 mrad·mm)
- Future: New operational source will be installed in the spare HV terminal

Source test stand components

Source filament current evolution

Source Instability

Issue: Strong dependence of beam steering at the output of the optics box on beam pulser setting (duty cycle) **Reason:** Insulating coating layer on the electrostatic steering plate charged by beam provided deflecting field

Resolution: Aluminium steering plates replaced with stainless steel plates

Beam Distortion in the Source Optics Box

Reason: Circular apertures with biased parallel plates act as a quadrupole

Resolution:

- Include field maps into simulations or
- balance opposite polarity bias on the plates or
- make rectangular slot apertures

OPERA model of electrostatic steerer

-60

13-Sep-16

Beam envelope from H- source to buncher Squares represent measured beam size (2 rms)

- Electrostatic steerer quadrupole effects were removed
- Accurate model of beam optics from source to cyclotron was validated
- Good matching achieved
- High Level Application (HLA) of injection line was created and passed on to operations – first at TRIUMF!

Cyclotron Transmission

Cyclotron transmission is 70-75%; increased by ~5%:

- New 12 m section of injection line (better matching to cyclotron)
- Curved electrostatic deflector at injection (added vertical focusing)

- 3 high intensity beams extracted simultaneously
- Issue: Intensity instabilities in all beamlines
- Reason: BL1A / BL2A split ratio variation caused by radial beam density oscillation induced by the v_r = 3/2 resonance at the energy 428 MeV [3, 4] due to residual 3-rd harmonic of the cyclotron magnetic field
- Mitigation:
 - Pulser modulated duty cycle feedback on BL2A intensity
 - 3-rd harmonic compensation with harmonic coils 12 and 13
 - Active feedback on radial beam position by regulating 1-st harmonic component with harmonic coil 12
- Outcome:
 - Intensity instabilities in BL1A and BL2A within +/- 1% solved!
 - Intensity instabilities in BL2C +/- 5% still a problem

- Remained issue: Intensity instabilities in BL2C (+/- 5%)
- Reason: Not understood yet
- **Observation:** With vertical mis-steering at injection there is vertical size/position fluctuation, causing variation of extracted beam at 100 MeV with partially dipped foil
- Mitigation: Extraction by a narrower foil fully dipped through the beam
- **Outcome:** Fast intensity instabilities in BL2C reduced down to +/- 1%

Sr-82 Production

In 2013 Sr-82 Production Facility upgraded to 100 μ A of protons

- **Need:** To run BL2C4 in a single user mode
- **Problem:** ~2% of beam bypassing widest extraction foil
- Solution: With 3 trim coils we made a field bump in B_z to allow a 180 degree phase slip so that the whole beam of ~50 degree phase width turns around, gets decelerated back and passes through extraction foil again

Beamline 2C4 Capacitive Probe -- cyclotron duty factor=9.7%

Future plans:

- Increase Sr-82 production by 50% with elongated Rb target
- Reduce radioactive gas (O-15) release into nuclear ventilation with introduction of a delay/decay line
- Optimize target cooling
- Redesign BL2C4 (~5 m) to introduce beam rastering

2005	2016			
Front side				
Used Pyrolytic Graphite foil (stainless steel frame).	Highly Oriented Pyrolytic Graphite at the end of the year (tantalum frame).			
Loose ⁷ Be tank contamination around extraction 1A (in counts per min.):				
4.10 ⁵	2.10 ⁴			
Foil lifetime:				
~3 months, 50 mA hours	3+ years, 500 mA⋅hours			

Beam Losses

3 mechanisms leading to beam losses in the cyclotron:

- 1. Vertical effective emittance growth
- 2. Electromagnetic (Lorentz) stripping
- 3. Stripping on residual gas

Mitigation:

- Lorentz stripping was reduced from 5% to 3% by reducing extraction energy from 500 MeV to 480 MeV
- Cryo-pumping system upgrade: vacuum improved from 8.10-8 to 2.10-8 Torr.
- Studies of partial pressure of basic gases on the beam losses showed negligible impact on loss reduction beyond achieved vacuum

Future plans:

• Continue studies of beam vertical halo formation to reduce vertical tails losses down from 1.5%

Total Shutdown Dose for all TRIUMF Personnel

• Rotating a proton beam of reduced width (and smaller tails) on the ISAC targets would contribute to a more homogeneous temperature distribution across the target and enable operating at a higher average temperature.

• Should allow a beam current increase of up to 50% of present levels

• The increased average temperature would enhance diffusion and effusion of the isotopes, and higher currents will boost production – both will contribute to higher yield of the radioactive ion beams.

Raster magnet is a ferrite H-frame type magnet (supplied by ACSI)

Components and parameters:

- two magnets for X and Y movements
- two power supplies with adjustable frequencies: up to **400 Hz**.
- integral field up to 150 G-m
 By adjusting the phases and amplitudes of the X and Y magnets a variety of rastering patterns can be achieved

Non-intercepting Beam Position Monitor (BPM)

- Sensitivity ~2 μA
- Bandwidth ~10 kHz

New tune features:

- Beam is parallel in last drift
- 90 degree phase advance between raster magnets and target
- 4x4mm spot size
- Easy to steer
- Available diagnostics represents very well beam spot at the target

Dashed line – old tune; solid line – new tune

Beam Measurements

p+ = 55 μA Instant spot size = 4x4mm Rotating radius = 5.5 mm

Beam center trajectory on BPM

13-Sep-16

Yield enhancement with rotating beam

Isotope	Rot/Static	p+ [uA]	Yield [1/s]	Previous best yield from Ta [1/s]	p+ [uA]	Ratio rotating/ previous
Li11	Rotating	60	5.33E+04			2.3
	Static	40	2.36E+04	2.3E+04	65	
Li8	Rotating	60	1.37E+09			1.5
	Static	40	5.13E+08	9.1E+08	70	
Na26	Rotating	50	1.44E+07	5.9E+06	70	2.4
Na28	Rotating	50	1.32E+05	1.4E+04	70	9.4
Cs126	Rotating	50	1.29E+08	9.2E+07	70	1.4

Outlook

Cyclotron upgrade major objectives:

- Replace main magnet power supply (2017)
- Increase Sr-82 production by 50% (2017)
- Develop BL1A/BL1U beam sharing for Ultra Cold Neutrons program (2018)
- Build new BL4N with extracted 100 μA (4 years)
- Increase total extracted beam to 400 μ A (5-7 years)
 - Build new efficient H- source
 - Replace old injection line
 - Solve space charge issues at injection
 - Increase Dee voltage by 5-7%
 - Develop stable extraction of 4 high intensity beams

Cyclotrons-2016

- Reduce maintenance by switching to non-serviceable components (6-8 years)
 - New inflector
 - Cyclotron probes joints
- Extend running periods between major shutdowns to >1 year

13-Sep-16

25

Canada's national laboratory for particle and nuclear physics and accelerator-based science

> Thank you! Merci!

TRIUMF: Alberta | British Columbia | Calgary | Carleton | Guelph | Manitoba | McGill | McMaster | Montréal | Northern British Columbia | Gueen's | Regina | Saint Mary's | Simon Fraser | Toronto | Victoria | Western | Winnipeg | York

Follow us at TRIUMFLab

f 🖸 🏏