

Cyclotrons and superconducting linacs as high intensity driver accelerators

Mike Seidel, PSI

International Conference on Cyclotrons and their Applications

Zürich, Sep 16

Outline

- Proton Drivers and their Applications
- Specific technology aspects of cyclotrons and superconducting linacs
 - parameter reach (power/energy)
 - technology, complexity
 - energy efficiency
 - reliability/trip statistics
 - economy, size/cost
- Conclusion and Remarks
 - Pro's and Con's on Linear vs. Circular

Applications and Requirements for Proton Driver Accelerators

proton drivers are needed to generate **secondary radiation**, typically: **neutrons, muons, neutrinos** applications are:

ADS, particle physics- and solid state physics research

- energy: ADS, Neutron Sources around 0.8..2GeV, others up to ~100GeV
- power: 1...15MW; ADS: $P_{therm} = P_{beam} \times G/(1-k)$
- **beam losses**: \approx 1W/m; PSI: 100W at critical location
- reliability: ADS: 0.01...0.1 trips per day(!)
- **efficiency**: as best as possible, $\eta = P_{beam}/P_{grid} = 20...50\%$
- **cost:** as low as possible; ADS: compare nuclear power plant: O(5B€)

optimum p-energy for neutron production?

figure: n-production per particle and energy

flat maximum around 1..1.2GeV

A. Letourneau et al. / Nucl. Instr. and Meth. in Phys. Res. B 170 (2000) 299±322

Proton Drivers – Concepts & Applications

	Neutrino	Muons	Neutrons	ADS	RIB's
Cyclotron	Dae $\delta alus^1$	PSI-HIPA TRIUMF	PSI-HIPA CIAE	AIMA ² TAMU-800 ³	TRIUMF RIKEN GANIL
RCS		J-PARC	J-PARC ISIS CSNS		
FFAG				KURRI +ongoing studies ⁴	
s.c. Linac	PIP II ⁵	PIP II ⁵	SNS ESS ISNS ⁶	ADSS ⁷ CIADS ⁸	FRIB

1 Decay-at-Rest Experiment for δcp studies At the Laboratory for Underground Science, MIT/INFN-Cat. et al

2 Accelerators for Industrial & med. Applications, reverse bend cyclotron, AIMA company

3 Cyclotron 800MeV, flux coupled stacked magnets, s.c. cavities, strong focusing channels, Texas A&M Univ.

4 FFAG studies, e.g. STFC

5 SRF linac, Proton Improvement Plan-II (PIP-II), Fermilab, Batavia

6 Indian Spallation Neutron Source, Raja Ramanna Centre of Advanced Technology, Indore, India

7 Accelerator Driven Sub-critical System at Bhaba Atomic Research Centre (BARC), Mumbai, India

8 China Initiative Accelerator Driven System, Huizhou, Guangdong Prov. & IMP, Lanzhou, China

operating in construction concept study

High Intensity Landscape

intensity forefront today:

- SNS Linac: 1.4MW pulsed
- PSI cyclotron: 1.4MW CW
- J-PARC RCS: 0.5MW...1MW pulsed

Superconducting Linac

- + low RF losses (high Q) \rightarrow effective energy transfer
- + large aperture $(5..10 \text{ cm}) \rightarrow \text{low beam losses}$
- + strong focusing using quadrupole lattice -> very high intensity possible
- + very high energy possible by adding length
- significant cryo losses at low $T \rightarrow$ limits overall energy efficiency
- each structure passed only once by beam \rightarrow poor economy
- lengthy machine & building; complex and expensive technology

superconducting RF technology

Advantages of s.c. technology:

- tremendous progress over two decades! (DESY & TESLA collab.)
- CW operation possible, small RF losses (beware cryo efficiency)
- efficient power transfer; no overhead power for structures / couplers
- promising outlook for future dev.: high Q, high Tc materials, e.g.

High Q₀ Development, A.Grassellino (FNAL), IPAC15

[B.H.Wiik, DESY director, †1999]

s.c. resonators have extremely high Q, e.g. 2E10@1.3GHz (E-XFEL)

at this Q a church bell would ring for 2 years(!)

s.c. cavity Lorentz force detuning

High fields generate a pressure on the **cavity walls**; due to the narrow resonance at high Q the frequency shift is significant

 $\Delta f \propto E^2$

Example SNS high beta cavity without and with detuning compensation [Delayen et al]

energy efficiency of s.c. Linacs

TT

 $\boldsymbol{\alpha}$

 contrary to s.c. coils, s.c. resonators are not loss free, losses are described by the surface resistance R_s with two components R_{BCS}, R_{res}

(G geometry constant, ca. 300Ω):

$$R_s = R_{\rm BCS}(T) + R_{\rm res}(H_{\rm ext})$$
 $Q_0 = \frac{\omega U}{P_{\rm dissip}} = \frac{G}{R_s}$

• the relation between dissipated power and voltage is given through (R/Q):

$$\left(\frac{R}{Q}\right) = \frac{U_a^2}{P_{\rm dissip}Q}$$

• cooling power at room temperature is much higher due to Carnot efficiency

$$P_{\rm cryo} = \frac{P_{\rm cold}}{\eta_c \eta_p} \approx 700 P_{\rm dissip} @2 {\rm K}$$

energetic efficiency of s.c. Linacs

Hypothetical example for 1GeV Linac, simplified: 100% single s.c. cavity type:

E _f	1 GeV	
U _a per cavity (1m)	15 MeV	
(R/Q)	1020Ω	
Q	10 ¹⁰	
P _{dissip}	22W + 5W(static)	
CoP(2K)	700	
P _{cryo}	18.9kW	
η_{RF}	55%	
η _{tot} (1mA, P _{beam} = 1MW)	32%	$\eta_{ m tot}$:
η _{tot} (5mA, P _{beam} = 5MW)	48%	

 P_{beam}

Comment: pulsed linacs have much lower efficiency

S.c.Linac: Parameter Examples

parameters* for high- β part of proton linac:

facility	E _{range} [MeV]	P _{beam} [MW]	avg Grad. [MV/m]	Freq [MHz]	n _{cav}	length [m]	P _{coupler} [kW]
SNS	382-974	1.4	12,3	805	48	90	18
ESS	561-2000	5.0	19,0	704	84	177	43
CADS	367-1500	15.0	10,4	650	85	≈200	135

* taken from conf. papers, subject to adjustments

note: **these gradients** are moderate as compared to the electron linacs at 1.3GHz (20kW per coupler)

> European XFEL, statistics as delivered, D.Reschke (DESY)

s.c. linac RF coupler

type: coaxial (antenna) two ceramic windows, intermittend vacuum, Conditioning critical

limitation for s.c. linacs: power per coupler

→ high beam power at moderate energy is difficult due to limited power transfer per coupler

 $P_{\rm tot} = n \times P_{\rm coupl}$

CW values achieved in tests at CERN: courtesy E.Montesino

 \rightarrow established operating values are low today, e.g. SNS, E-XFEL

tuning experience in SNS Linac @ 1MW

Mike Plum, ORNL, HB2012:

empirically optimized for low losses, linac and transport lines

 → beam core optics is obviously mis-matched, presumably beam tails "feel"deviating optics and are better transported in this case
 → also at PSI (cyclotron) we rely much on empirical tuning ☺

Summary s.c. linacs – specific aspects

	comment	performance	economy	technical challenge	outlook
high Q	low loss, but at low T, Lorentz force detuning	good	good	yes	
advanced cavity material	extremely pure Nb (energy!), advanced surface treatment		bad	yes	sputtering, coating
cooling efficiency	Cop(2K) ≈ 700(!)		bad		high Q, high Tc mats.
crucial coupler	for high current high power transfer required- bottleneck	bad	bad	yes	good CERN Results
multiple cav. per klystron	regulation problem, lowest cav. limits performance	bad	good		

Isochronous Separated Sector Cyclotron

- + multiple acceleration with same resonators \rightarrow economy
- + continuous wave acceleration naturally possible
- + relatively compact layout
- + good energy efficiency
- extraction critical → energy limitation (less severe for stripping extraction)
- relatively weak focusing \rightarrow intensity limitation
- large radial orbit variation → wide vacuum chamber and magnets (forces!)

PSI Ring cyclotron:

- 590MeV, 1.4MW
- diameter 15m, 186 turns
- extraction septum
- RF: Grid-to-beam: 32%

cyclotron technology: resonators

cyclotron technology: sector magnets

cyclotron magnets typically cover a wide radial range \rightarrow magnets are heavy and bulky, thus costly

PSI sector magnet

iron weight: 250 tons coil weight: 28 tons Field: 2.1T orbit radius: 2.1...4.5 m spiral angle: 35 deg

Riken SRC sector magnet

weight: 800 tons Field: 3.8T, 5000A orbit radius: 3.6...5.4m

cyclotron extraction

for clean extraction of protons a large turn separation is of utmost importance

Charge exchange extraction schemes

Comments:

- H-: significant probability for unwanted loss of electron; Lorentz dissociation: B-field low, scattering: vacuum 10⁻⁸mbar
- H2+: unfavorable charge to mass ratio (economy); complex extraction path or reverse bend needed
- e- may be deposited in foil

Cyclotron Intensity limitations: space charge

Longitudinal space charge \rightarrow transverse tails \rightarrow losses at extraction [Joho 1981]

$$\Delta U_{sc} = \frac{8}{3} e I_p Z_0 \ln \left(4\frac{w}{a}\right) \cdot \frac{n_{\max}^2}{\beta_{\max}} \approx 2.800\Omega \cdot e I_p \cdot \frac{n_{\max}^2}{\beta_{\max}}$$
$$\frac{1}{\Delta R_{\text{extr}}} \propto n_{\text{max}}$$

→ Attainable current scales as Voltage³

Transverse space charge \rightarrow reduces focusing, tune shift

$$\ddot{y} + \left(\omega_c^2 \nu_{y0}^2 - \frac{n_v e^2}{\epsilon_0 m_0 \gamma^3}\right) y = 0$$
$$\Delta \nu_y \approx -\sqrt{2\pi} \frac{r_p R}{e\beta c \nu_{y0} \sigma_z} \frac{m_0 c^2}{U_t} I_{\text{avg}}$$

 \rightarrow This limit is for cyclotrons more severe than for Linacs

High intensity cyclotrons: Studies

- H₂⁺ AIMA Cyclotron w reverse bend, multiple 60keV injection [P.Mandrillon et al]
- H₂⁺ Daedalus cyclotron [neutrino source, L.Calabretta et al]
- TAMU: s.c. magnet, stacked cyclotron w strong focusing [P.McIntyre et al]

reliability, todays performance

reliability, concepts

proposed solution: **redundancy** and automatic readjustments; in Linac: cavity failure is compensated by redistribution of lost energy gain; with cyclic accelerator or injector: use more than one accelerator

numerical example:

tube: MTBF=5000h; MTTR=8h

- Linac with 80 tubes, accepting 0 fault: MTBF_{eff} = 62h
- Linac with 80 tubes, accepting 1^(k=2) fault: MTBF_{eff} = 1.074h
- Linac with 80 tubes, accepting 2 faults: MTBF_{eff} = 26.067h
- cyclotron with 4 tubes, accepting 0 faults: MTBF_{eff} = 1.250h

binomial distribution, B_p = incomplete Beta Function

$$P_{\text{eff}} = \sum_{m=k}^{n} \binom{n}{m} p^m (1-p)^{n-k}$$
$$= B_p(k, n-k+1)$$

facility size

cyclotron facility shielding, e.g. d=3m, 2x23mx23mx11m: 12.400m³ concrete

linac facility shielding, e.g. d=3m, 8x8x200 + 23mx23mx11m: 25.800m³ concrete

- cyclotrons should have an advantage in view of building size and shielding volume
- the lengthy character of the linac tunnel implies more restrictions on the choice of the construction site

about cost

example SNS, courtesy: N.Holtkamp [2006, USD]:

Description	A	ccelerator
Project Support	75.6	
Front End Systems	20.8	20.8
Linac Systems	311.0	311.0
Ring & Transfer System	146.6	146.6
Target Systems	108.2	
Instrument Systems	63.3	
Conventional Facilities	378.9	
Integrated Control Syst	58.5	58.5
BAC	1,162.9	
Contingency	29.8	
TEC	1,192.7	
R&D	99.9	79.9
Pre-Operations	119.1	95.3
TPC	1,411.7	712.1

inflation 06-16 USA: \approx +22% \rightarrow 870M\$

example PSI-HIPA, courtesy: U.Schryber [1995]:

	MCHF [1975/78]
Ring Cyclotron	31,1
Injector II Cycl. + CW	22,5
Buildings + Infrastructure	51,5
Sum accelerator:	53,6
+ inflation factor* 2016 (+120%):	120MCHF
*not reliable	

cost estimates for new projects need detailed studies, thus focus on numbers for existing machines to give an impression on the possible cost range

Summary – p-Driver Accelerators

	isochronous cyclotron	s.c. linac
parameter reach	 - E_k≈1GeV, diminishing turn separation - focusing limit, ≈5MW? 	++ - large aperture → intensity - strong focusing - unlimited energy
reliability	 + simplicity, but tedious tuning, extraction 	 redundancy possible, but otherwise complex system
economy	 ++ comparably compact classic technology huge magnets 	 many expensive cavities, cryogenics, energy consum. lengthy building
outlook	 new concepts are discussed, community comparably weak 	++ - high Tc development - high Q treatments

Subjective: in community less cyclotron expertise than linac expertise \rightarrow bias on choice of technology

PAUL SCHERRER INSTITUT

thank you for the attention!