

A Study of the Wiggler Enhanced Plasma Amplifier for Coherent Electron Cooling

Alexander Zholents, Argonne National Laboratory Chris Hall, RadiaSoft

COOL 2023 conference, Montreux, Switzerland, October 10, 2023

Preamble

The amplifier to be used for Coherent Electron Cooling (CeC)

 $\Delta n(t) = \Delta n_0 \cos(\omega_p(t)t)$

(V. Litvinenko , Y. Derbenev, Phys. Rev. Lett., 102:114801, 2009)

Plasma Cascade Amplifier (PCA)

Obtain a gain in microbunching by creating a runaway instability of plasma oscillations (V. Litvinenko *et al.*, Phys. Rev. Accel. Beams 24, 014402, 2021.)

For instability one needs to modulate piecewise $\;\omega_p(I,\sigma,\gamma)\;$

(in a direct analogy to a FODO channel described by Hill's equation with piecewise periodic coefficients) Option 1) use $\sigma(t) \rightarrow$ Plasma Cascade Amplifier (Litvinenko *et al.*)

Option 2) use $\sigma(t)$ and $\gamma(t) \rightarrow$ Wiggler Enhanced Plasma Amplifier (WEPA, Zholents, Stupakov)

in the wiggler
$$\gamma_z = \frac{1}{\sqrt{1 - \bar{v}_z^2/c^2}} = \frac{\gamma}{\sqrt{1 + K_w^2/2}}$$
 $K_w = \frac{eB_w \lambda_w}{2\pi m_e c}$

(G. Stupakov and A. Zholents, 13th Workshop on Beam Cooling and Related Topics, 2021)

Note: WEPA requires separation of ion and electron beams, PCA does not

Theory

$$\text{variables} \begin{cases} & \Delta \hat{n}_k(s) = \int_{-\infty}^{\infty} \Delta n(s,z) e^{-ikz} dz & \text{Fourier transform of a density perturbation} \\ & \Delta \eta = \frac{\Delta E}{E} & \text{relative energy spread} \\ & \Delta \hat{\eta}_k(s) = \int_{-\infty}^{\infty} \Delta \eta(s,z) e^{-ikz} dz \\ & \frac{d}{ds} \text{Im}\left(\mathcal{Z}\right) = Z_I(k) & \text{impedance per unit length} \\ & \Delta \hat{I}_k = e \Delta \hat{n}_k c & \text{Fourier transform of a peak current} \end{cases} \\ \\ \text{equations} \begin{cases} & \frac{d\Delta \hat{\eta}_k}{ds} = i e \frac{\Delta \hat{I}_k c Z_I}{E} = i \frac{r_e c Z_I}{\gamma} \Delta \hat{n}_k \\ & \frac{d\Delta \hat{n}_k}{ds} = -i k \frac{1}{\gamma_z^2} n_0 \Delta \hat{\eta}_k & \text{linearized continuity equation for cold plasma in the wiggler} \\ & \frac{d^2 \Delta \hat{n}_k}{ds^2} = -c^{-2} \omega_p^2(k) \Delta \hat{n}_k \end{cases} \end{cases}$$

plasma frequency

$$\omega_p^2(k) = \frac{I}{I_A \gamma} \frac{kc^3}{\gamma_z^2} \left(-Z_I(k)\right) \qquad (r_e n_0 = I/I_A)$$

Theory (2)

 $l_w \gg 2 \frac{\gamma_z^2}{k}$ subsequent analysis is valid when wiggler is longer than a transient length ~ (1 - 8) cm

 $Z_I = Z_{SC} + Z_{Rad}$ in the case of the wiggler impedance (G. Geloni *et al.*, NIM A, 2005)

 $ho(r) = rac{1}{2\pi\sigma^2 c} e^{-rac{r^2}{2\sigma^2}}$ electron distribution in transverse coordinate

$$\begin{cases} -Z_{SC}(k) = \frac{2k}{\gamma_z^2 c} I_2\left(\frac{\sigma}{\Sigma_{SC}(k)}\right) \\ -Z_{Rad}(k) = \frac{K_W^2 k}{2\gamma^2 c} \left[\frac{\pi}{2} I_3\left(\frac{\sigma}{\Sigma_{Rad}(k)}\right) - I_2\left(\frac{\sigma}{\Sigma_{Rad}(k)}\right)\right] \\ I_2(a) = \frac{1}{2} e^{a^2} \Gamma\left(0, a^2\right) \\ I_3(a) = \text{MeijerG}\left[\left((0), \left(-\frac{1}{2}\right)\right), \left((0, 0), \left(-\frac{1}{2}\right)\right), a^2\right] \\ \Gamma(0, x) \text{ is incomplete gamma function} \\ \text{MeijerG}\left[\left((0), \left(-\frac{1}{2}\right)\right), \left((0, 0), \left(-\frac{1}{2}\right)\right), x\right] \\ \text{ is the Meijer G-function} \end{cases}$$

 $k(\mu m^{-1})$

Theory (3)

Impedance as a function of frequency in the case of K_W =1.5, beam energy = 157 MeV, and σ = 80 μ m

Theory (4)

three different calculation approaches agree perfectly

Theory (5)

Unit transport $M_{\text{unit}} = M_C \cdot M_W$

has two eigenvalues G_1 and G_2 . If both $|G_1| = |G_2| = 1$, then the plasma oscillation in the amplifier is stable and there is no gain in the microbunching. The plasma oscillation is unstable when either $|G_1| > 1$ or $|G_2| > 1$

Theory (6)

Eigenvalues $\begin{cases}
G_1 = \cos(\phi) - \frac{1}{2}\gamma_z^2 R_{56}k_p \sin(\phi) - \sqrt{\left(-\cos(\phi) + \frac{1}{2}\gamma_z^2 R_{56}k_p \sin(\phi)\right)^2 - 1} & k_p = \omega_p/c \\
G_2 = \cos(\phi) - \frac{1}{2}\gamma_z^2 R_{56}k_p \sin(\phi) + \sqrt{\left(-\cos(\phi) + \frac{1}{2}\gamma_z^2 R_{56}k_p \sin(\phi)\right)^2 - 1} & \phi = k_p l_w
\end{cases}$

Since it is desirable to have ϕ in a neighborhood of $\pi/2$ and $\gamma_z^2 R_{56} k_p >> 1$, we write <u>approximate</u> G_1 and G_2 $G_1 \simeq -\gamma_z^2 R_{56} k_p \sin(k_p l_w)$

Parametric study of the gain after one amplifier unit

Parametric studies of the gain after one amplifier unit (2)

Goal of simulations

To keep SASE FEL resonance outside of the amplifier bandwidth we have to use $K_w < 1.67$ such as $k_{SASE} > k$ Wiggler-enhanced plasma amplifier was modeled using:

- OPAL-FEL for the wiggler sections (code MITHRA was ported to OPAL for that purpose)
- Elegant for the chicanes

A. Adelmann *et al.*, **OPAL** a Versatile Tool for Charged Particle Accelerator Simulations, arXiv:1905.06654, 2019.

A. Fallahi, A. Yahaghi, and F. Kārtner, **MITHRA** 1.0: A Full-Wave Simulation Tool for Free Electron Lasers, Computer Physics Communications, 228, pp.192-208, 2018.

Benchmarking OPAL-FEL with SLAC experiment^{*)}

*) Arnau Albà et al., Computer Physics Communications, 2022

Benchmarking OPAL-FEL with ANL experiment *)

Regime with large K_W and small γ, γ_z

AWA beam energy = 45.4 MeV, bunch charge = 300 pC, bunch length =0.25 - 0.5 mm

*) Arnau Albà et al., Computer Physics Communications, 2022

Phase space reconstruction from measurements using magnetic spectrometer and deflecting cavity

Section of AWA beamline with APS wiggler Wiggler period = 8.5 cm, K=10.5, γ_z = 11.6, $k_r = 0.01 \mu m^{-1}$

Lattice of a single amplifier unit used in simulations

<u>Wiggler:</u> length = 1.2 m period = 3.3 cm K = 1.5 B = 0.49 T

<u>Chicane</u> $R_{56} = 1.0 \text{ mm}$ magnet length = 5 cm magnet field = 0.04 T

Initial electron beam

Core:

$$n(z) = \Delta n \sin(kz) + n_0$$
$$\delta_m = \frac{\Delta n}{n_0}$$

Tails: $n_{\rm tail}(z) = n(\pm L/2) {\rm erf}\left(2\frac{z\pm L/2}{l}\right)$

- Sampling for distribution in z
 - Calculate cumulative distribution function
 - Numerically invert CDF
 - Generate samples from Halton sequence
 - Apply inverted CDF
- All other distributions are Gaussian

Longitudinal phase space

Simulation setup

Define:

- grid resolution,
- energy resolution<8 keV,
- grid domain,
- number of macroparticles,
- seed modulation amplitude.

 Δn must be larger than numerical shot noise, and smaller than ~ 0.2n₀/Gain to avoid gain saturation

Convergence of global beam parameters in many slices in bunch core was used as convergence criteria

Selection of the solver's grid resolution

Simulation with small grid resolution $\Delta x = \Delta y = 2.5 \ \mu m$ and $\Delta z = 7.5 \ nm$ was used as the reference

Plots show deviations from reference for the beam energy, beam transverse size and emittance.

Grid resolution $\Delta x = \Delta y = 10 \ \mu m$ and $\Delta z = 28.6 \ nm$ was chosen

Selection of the number of macroparticle

- Calculation using 64x10⁶ macroparticles was used as the reference
- Solver grid resolution $\Delta x, \Delta y, \Delta z = 10\,\mu{\rm m}, 10\,\mu{\rm m}, 28.6\,{\rm nm}$ was used

Plots show deviations from reference for the beam energy, beam transverse size and emittance.

Selection of seed modulation amplitude

Need to avoid harmonic formation

SASE FEL resonance suppression

Simulation results for one amplifier unit in comparison with the theory

Simulations in comparison with approximate theory

Simulation results for two amplifier units

 $R_{56} = 1 \text{ mm}$ $\sigma_{\eta} = 2.1 \text{x} 10^{-4}$

Gain versus a number of wigglers in the amplifier unit (2)

Amplifier bandwidth is mostly affected by the energy spread and a little bit by CSR in chicanes

Useful discussions with Gennady Stupakov are acknowledged

Conclusion

- WEPA is a viable candidate for the CeC amplifier. It offers a competitive gainbandwidth product and uses smaller real estate comparing to a drift-based microbunching amplifier.
- Care was taken to control for nonphysical numerical effects and limitations in the simulation.
- Simulations and analytical calculations qualitatively agree but show some important differences.
- Similar simulations and calculations performed for the microbunching amplifier with drifts replacing wigglers show better agreement.