

STOCHASTIC COOLING OF ELECTRONS AND POSITRONS WITH EUV LIGHT

Alexander Zholents Argonne National Laboratory

COOL 2023 conference, Montreux, Switzerland, October 10, 2023

OSC in traditional approach

Argonne

Limitations

- Amplifiers are available only for several IR wavelengths
- Amplifier and refractive lenses limit bandwidth of the system
- 1) A. Mikhailichenko, M. Zolotorev, "Optical Stochastic Cooling", PRL, 71, 1993.
- 2) M. Zolotorev, A. Zholents, "Transient-time method of optical stochastic cooling", PRE, V.50, 1994
- 3) J. Jarvis, V. Lebedev, et al., "Experimental demonstration of optical stochastic cooling", Nature, 2022.

New approach: cooling with EUV light

- No amplifier
- Reflective optics
- 100% relative bandwidth

Use light in extreme ultraviolet part of spectrum; bandwidth $\Delta f = 7.5 PHz$

Argonne 4

• Use multiple light sources within one setup

Basics of stochastic cooling: measure, correct, randomize

New approach: delayed correction

= d

Argonne Argonne Argonatory

WIGGLER MAGNET

$$E_{x_1}(t) = -\frac{e}{4\pi\epsilon_0 R_0} \frac{d^2 \hat{x}}{c^2 dt^2} \,^{*)}$$

The field produced by one electron and seen by the observer at a distance $R_0 >>$ wiggler length

 \hat{x} is the *apparent* trajectory of the electron t is the time in the observer's frame

The transported field to the second wiggler

$$E_{x_2}(t) = -\frac{e}{4\pi\epsilon_0} \frac{1}{\gamma} \frac{1}{2.35\sigma_{dif}} \frac{d^2\hat{x}}{d(ct)^2}$$

$$\lambda_c = \frac{4\pi}{3} \frac{\rho}{\gamma^3}$$
$$\sigma_\theta = \frac{0.64}{\gamma}$$

critical radiation wavelength

radiation divergence at a critical radiation wavelength

 $\sigma_{dif} = rac{\lambda_c}{4\pi\sigma_{ heta}}$ rms size of focused light

*) The Feynman Lectures on Physics (Addison-Wesley, New York, 1963), Vol. 1, Chapter 28

CORRECTION "KICK" FOR ENERGY OFFSET

Energy gain/loss as a function of electron arrival time delay in interaction with a radiation pulse from a single pole

THEORY

Argonne Argonational Laboratory

THEORY

CONT'D

In Zolotorev, Zholents paper $\alpha_{max} = -\frac{0.18}{N_s}$

THEORY

CONT'D

Cooling rate in case of "insufficient cooling" (when correction kicks are too weak)

$$\alpha = -\frac{A}{\sigma_{\delta}} \frac{4\sigma_y e^{-\frac{1}{2+2\sigma_y^2}}}{(1+\sigma_y^2)^{3/2}} \simeq -1.125 \frac{A}{\sigma_{\delta}}$$
$$\sigma_y = 0.84$$

A straightforward interpretation.

Damping time is defined by a number of the kicks needed to zero the energy spread

$$n_{kicks} = -\frac{\sigma_{\delta}}{1.125A}$$

Therefore, cooling decrement in the ring with one cooling section employing the wiggler with $N_{\rm w}$ periods is

$$lpha_1=-2.25N_wrac{A}{\sigma_\delta}f_0$$
 f_0 is the revolution frequency

Argonne Argonational Laborationy

CASCADE-AMPLIFIED EUV STOCHASTIC COOLING

Argonne

When N_c cooling sections is used back-to-back, the cooling rate is growing NOT as N_c , but as

 $\alpha_{cascade} = -2N_w \frac{A}{\sigma_\delta} (0.75N_c + 0.41N_c^2) f_0$

TRANSVERSE SLICING*)

Much simpler when operating at short wavelength

 σ_v rms vertical beam size

 σ_h rms horizontal beam size

Actual number of electrons in the slice

$$\hat{N}_s = N_s \frac{\sigma_{dif}^2}{\sigma_v \sigma_h}$$

 $N_{\rm s}$ is the number of electrons in the longitudinal slice

It cannot help to reduce the damping time. It only makes "insufficient cooling" even more "insufficient.

*) Zolotorev, Zholents, "Transient-time method of optical stochastic cooling", PRE, V.50, N4, p.3087, 1994

LIGHT AND ELECTRON BEAM TRANSPORT

Image light source (and electron beam) from the upstream wiggler to the downstream wiggler

$$\begin{pmatrix} -1. & -3.55271 \times 10^{-15} \\ -0.00931766 & -1. \end{pmatrix}$$

Beam energy = 147 MeV Critical photon energy 23.7 eV Wiggler period= 12.9 cm Number of periods = 10 Argonne 🍊

IMAGING OF A SINGLE ELECTRON RADIATION FROM THE CENTER OF THE UPSTREAM WIGGLER TO THE DOWNSTREAM WIGGLER

LIGHT PROPAGATION STUDIES

Intensity and phase at shifted longitudinally (-105 mm) and shifted vertically by 0.1 mm

CONT'D

400 (μm)

-400

-200

0

200

🕨 Argonne 🕰

400 (μm)

200

-400

-200

200 400 (µm)

-400 -200 0 200 400 (μm)

-400 -200

0

BEAM OPTICS OF COOLING SECTION

Dogleg-like lattice, two positive bends are followed by two negative bends, π phase advance between bends. Small trim magnets produce dispersion bump to control R₅₆ (not visible at this scale).

CORRECTION OF SECOND ORDER TIME-OF-FLIGHT ABERRATIONS

Use four sextupole "families"

This allows to cancel aberrations using pairs of sextupoles with the opposite signs of the field.

Hamiltonian:

$$H(\phi x, \phi y) = (\text{linear terms}) + \sum \left(J_x^{3/2} (\text{Cos}[\phi x] + \text{Cos}[3\phi x]) + J_x^{1/2} J_y (\text{Cos}[\phi x] + \text{Cos}[\phi x \pm 2\phi y]) \right)$$

POSSIBLE APPLICATIONS OF EUV COOLING

- 1. Produce a beam of relativistic positronium atoms:
 - obtain ultra-cold electrons in one ring
 - obtain ultra-cold positrons in another similar ring
 - merge electrons and positrons in a common long straight section
 - obtain positroniums
- 2. Produce a beam of antihydrogen atoms:
 - obtain ultra-cold positrons in one ring
 - obtain antiprotons in another ring
 - merge antiprotons and positrons in a common long straight section for positron cooling of antiprotons
 - obtain antiprotons

3. Prepare "cold" electrons for an electron cooling of ions and protons in the Electron Ion Collider *)

*) Tomorrow, Sergei Seletski will discuss the alternative (main) approach of using the electron storage ring with many wigglers for a strong radiation cooling of electrons

STORAGE RING DESIGN FOR EIC PROJECT

Circumference =447.2 m

Distance along electron beam trajectory (m)

STORAGE RING DESIGN (2)

Twiss functions in the middle of the cooling straight^{*}) Beta_x = 160 m Beta_y = 110 m Dispersion = 0.66 m

Argonne -

*) This set has been chosen by Sergei Seletski for electron cooling of protons

COOLING RATE AND IBS GROWTH RATE

Use wiggler with period of 12.9 cm, peak field of 1.6 T, and 10 periods

Consider 1 cascade with 6 cooling sections (total length ~ 100 m)

Average energy correction ("kick") per orbit turn due to cooling is 30 eV

"Slice" length ~ 0.13 fs (7.5 PHz bandwidth)

Number of electrons in the "longitudinal slice": $N_s \simeq 22000$

```
Diffraction size \sigma_{dif} \simeq 2 \ \mu m
```

Number of electrons in the "slice" after transverse slicing: $\hat{N}_s \simeq 2$

Estimated cooling rate is 101 sec⁻¹

Estimated intrabeam scattering growth rate is 39 sec⁻¹

realized (almost)

Argonne

COOLING RATE AND IBS GROWTH RATE (2)

Beam parameters used for cooling and IBS calculations^{*)}

Argonne

	eRHIC/p	Cooler ring/e	Unit
Energy	270 GeV	147 MeV	
Energy spread	6 E-4	1.3 E-3	
Hor. emittance	11.3	12	nm
Ver. emittance	1.0	6.5	nm
Rms bunch lenth	6	14.5	cm
Bunch intensity	6.9 E10	1.9 E11	
Peak current	23	27	А

*) provided by S. Seletski

a) equilibrium relative energy spread with 6 cooling sections in cascade is $7x10^{-4}$

b) equilibrium relative energy spread with 8 cooling sections in cascade is 4.5 x10⁻⁴

Key Takeaways

- Stochastic cooling of electrons and positrons in XUV is feasible, in principle.
- It provides a viable alternative to radiation cooling of electrons for electron cooling in EIC project. Design shows a good margin in cooling capacity above the required performance.
- However, achieving an order of a magnitude better stability of the pathlength through cooling section(s) than it was demonstrated in OSC experiment at IOTA is questionable.