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Abstract
In electron cooling, the transverse cooling rate is usually

smaller than the longitudinal rate, especially at high ener-
gies. By introducing dispersive cooling, it is possible to
redistribute the cooling rate between longitudinal and trans-
verse planes. Theoretically, achieving dispersive electron
cooling requires an ion dispersion and a transverse gradient
of longitudinal cooling force. The latter depends on many
factors such as beam energy offset, transverse displacement,
e-beam density distribution and space charge effect. There-
fore, several methods can be employed to achieve dispersive
electron cooling based on these factors. In this paper, these
factors and their respective impacts on the cooling rate are
discussed. Based on a linear friction force model, we pro-
pose a simple formula to numerically estimate the cooling
rate redistribution effect of these methods. The analytical
results are in good agreement with Monte-Carlo calculation
and numerical simulation.

INTRODUCTION
In theory, dispersive cooling requires both ion beam dis-

persion and a transverse gradient of the longitudinal cool-
ing force [1]. To simply explain that, we assume an off-
momentum particle passing through the cooling section with
a dispersion function 𝐷, and only consider the longitudinal
cooling with a linear cooling force Δ𝛿𝑝 = −𝜆𝛿𝑝, the parti-
cle coordinate after cooling can be written by

𝑥𝛽2 = 𝑥 − 𝐷𝛿𝑝2 = 𝑥𝛽1 + 𝐷𝜆𝛿𝑝1, (1)

where 𝑥𝛽 denotes the betatron oscillation, and 𝑥 is the real
coordinate which is assumed to be unchanged during passing
through the cooling section. If the cooling coefficient 𝜆 is
a constant, the amplitude of the betatron oscillation keeps
unchanged 𝑥𝛽2 = 𝑥𝛽1, which means that there is no cooling
contribution from the longitudinal direction to the transverse.
Otherwise, if the cooling force has a transverse gradient, for
example 𝜆(𝑥) = (𝑀 − |𝑥|)𝜆0 with 𝑀 > 𝑀𝑎𝑥[𝑥], the ampli-
tude of the oscillation turns to 𝑥𝛽2 ≃ (1 − 𝜆0|𝐷𝛿𝑝1|)𝑥𝛽1.
It indicates amplitude damping of the betatron motion. A
schematic plot of these two processes is shown in Fig. 1,
where the x-axis represents betatron oscillation under longi-
tudinal cooling of the y-axis. It clearly shows the amplitude
damping process with an appropriate longitudinal cooling
force setting, i.e. dispersive cooling.

We see that the transverse gradient of the longitudinal
cooling force plays a key role in dispersive electron cool-
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Figure 1: Comparison of the cooling process with two sets of
longitudinal cooling force. It demonstrates that a dispersion
and a transverse gradient of the longitudinal cooling force
are necessary for dispersive cooling (𝑥𝛽 = 1 m, 𝐷 = 1 m,
𝛿𝑝 = ±1, 𝜆0 = 0.01).

ing. Some experimental and simulation studies have demon-
strated several approaches to obtain this gradient. As indi-
cated in Ref. [2, 3], one approach is to introduce a displace-
ment between electron and ion beams, utilizing the parabolic
velocity profile of the electrons caused by its space charge.
Another method is by using an energy offset, a displacement
and a transverse density gradient of the e-beam [4]. Recently,
it has been demonstrated that an e-beam with Gaussian trans-
verse distribution can naturally provide this transverse gra-
dient, thus achieving dispersive cooling [5]. At the same
time, it shows that electron dispersion is also beneficial to
dispersive cooling. In this article, we conduct theoretical
and simulation studies of these methods and show how they
affect the cooling rate. Based on the linear cooling force
model, we finally propose a simple formula to numerically
estimate the cooling rate redistribution effect of these meth-
ods, and the analytical result agrees well with Monte-Carlo
calculation and numerical simulation.

DISPERSIVE ELECTRON COOLING
To begin with, we assume a linear cooling force Δ𝑢 =

−𝐶𝑛𝑒𝑢 both in transverse and longitudinal directions, where
𝑛𝑒 is the electron beam density, 𝐶 is the cooling coefficient
which depends on the velocity distribution of the electron
beam. Consider a beam displacement 𝑥𝑜, an energy offset 𝛿𝑜,
and horizontal dispersion 𝐷 of ions in the cooling section,
the momentum change of a single particle after cooling
can be described by Δ𝛿 ≃ −𝐶𝑝𝑛𝑒(𝛿 − 𝛿𝑒 − 𝛿𝑜), where
𝛿𝑒 = 𝐾𝑠𝑐(𝑥2 + 𝑦2

𝛽) is the electron momentum deviation due
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to space charge, and 𝑥 = 𝑥𝛽 + 𝑥𝑜 + 𝐷𝛿. Then we have

Δ𝛿2 ≃ − 2𝐶𝑝𝑛𝑒𝛿2 + 2𝐶𝑝𝑛𝑒𝛿𝛿𝑜 + 2𝐶𝑝𝑛𝑒𝐾𝑠𝑐𝛿(𝑥2 + 𝑦2
𝛽).

(2)
In the transverse direction, we only discuss the horizontal
direction. Assume 𝛼 = 0 and ignore the betatron evolution
in the cooling section, the single particle emittance is 𝜖𝑥 =
(𝑥 − 𝑥𝑜 − 𝐷𝛿)2 /2𝛽𝑥 + 𝛽𝑥𝑥′2/2, and the cooling effect can
be written by

Δ𝜖𝑥 ≃ −𝐷𝑥𝛽Δ𝛿/𝛽𝑥 + 𝛽𝑥𝑥′Δ𝑥′, (3)

where Δ𝑥′ = −𝐶𝑥𝑛𝑒(𝑥′ − 𝑥′
𝑒), 𝑥′

𝑒 = 𝐿𝑠𝑐√𝑥2 + 𝑦2
𝛽 is the drift

velocity caused by the space charge and magnetic fields.
Expanding Eqs. (2)–(3) and ignoring high-order and non-

correlated terms, the longitudinal and horizontal cooling
effects of the ion beam can be described as
⟨Δ𝛿2⟩ = − 2𝐶𝑝⟨𝑛𝑒𝛿2⟩ + 2𝐶𝑝𝛿𝑜⟨𝑛𝑒𝛿⟩

+ 2𝐶𝑝𝐾𝑠𝑐𝑥𝑜 (𝑥𝑜⟨𝑛𝑒𝛿⟩ + 2⟨𝑛𝑒𝑥𝛽𝛿⟩ + 2𝐷⟨𝑛𝑒𝛿2⟩)

⟨Δ𝜖⟩ = − 𝐶𝑥𝜖0⟨𝑛𝑒⟩ +
𝐶𝑝𝐷
𝛽𝑥

⟨𝑛𝑒𝑥𝛽𝛿⟩ −
𝐶𝑝𝐷𝛿𝑜

𝛽𝑥
⟨𝑛𝑒𝑥𝛽⟩

−
𝐶𝑝𝐷𝐾𝑠𝑐𝑥𝑜

𝛽𝑥
(𝑥𝑜⟨𝑛𝑒𝑥𝛽⟩ + 2⟨𝑛𝑒𝑥2

𝛽⟩ + 2𝐷⟨𝑛𝑒𝑥𝛽𝛿⟩) ,
(4)

where ⟨⟩ denotes averaging over the ion beam phase space,
𝑛𝑒(𝑥, 𝑦, 𝑠) is the local density of the e-beam which depends
on the position of ion particles. The equations show that en-
ergy offset, beam displacement, space charge effect as well
as e-beam density are the main factors affecting the cooling
rate, and that the coupling between position, momentum,
and e-beam density caused by dispersion is the reason for
this. The term related to drift velocity is eliminated as it
has no correlation with longitudinal cooling. Based on the
ion and electron beam distributions, Eq. (4) can be calcu-
lated analytically according to the law of the unconscious
statistician (LOTUS) [6]. As shown in Ref. [5], the cooling
rate redistribution for the e-beam with a Gaussian profile
is studied. In this section, we will discuss the effect of rate
redistribution for both Gaussian and uniform electron beams,
while including all the mentioned factors.

We define the gain factor as the ratio of the two cool-
ing rates with and without dispersion and other factors
𝑘 = 𝜆/𝜆0, where 𝜆𝑝 = ⟨Δ𝛿2⟩/𝛿2

𝑝, 𝜆𝑥 = ⟨Δ𝜖⟩/𝜖0 are
the longitudinal and horizontal cooling rates, and 𝛿𝑝, 𝜖0 are
the rms momentum spread and emittance, respectively. Also,
we always assume a DC e-beam, so that only transverse dis-
tribution is discussed. Using the same method in Ref. [5],
several cases that can realize dispersive electron cooling are
studied based on the e-beams with transverse Gaussian and
uniform distributions. Moreover, a Monte-Carlo calcula-
tion based on Eq. (4) is performed and compared with the
analytical formula.

Case 1: Gaussian E-Beam with Energy Offset Δ𝑜
and Beam Displacement 𝑋𝑜

As Y. S. Derbenev introduced in Ref. [1, 4], dispersive
electron cooling can be achieved by a longitudinal velocity

offset, a beam displacement as well as a transverse gradient
of electron density. For this case, we use a Gaussian e-beam
to produce the transverse density gradient

𝑛𝑒 = 𝑛𝑒0𝑒𝑥𝑝[−
(𝑥𝛽 + 𝑥𝑜 + 𝐷𝛿)2

2𝜎2
𝑒𝑥

−
𝑦2

𝛽

2𝜎2
𝑒𝑦

− 𝑠2

2𝜎2
𝑒𝑠

]. (5)

Furthermore, we assume that the ion beam also has a Gaus-
sian distribution in the transverse direction. Then, Eq. (4)
can be calculated and the final result of the gain factor is

𝑎 = √𝜎2
𝑒𝑥 + 𝜎2

𝑖𝑥

𝑏 = √𝜎2
𝑒𝑥 + 𝜎2

𝑖𝑥 + 𝐷2𝛿2
𝑝

𝑘𝑝 = 𝑒− 𝑥2𝑜
2𝑏2 [𝑎3

𝑏3 + 𝑎
𝑏5 𝐷2𝛿2

𝑝𝑥2
𝑜 + 𝑎

𝑏3 𝐷𝛿𝑜𝑥𝑜]

𝑘𝑥 = 𝑒− 𝑥2𝑜
2𝑏2 [𝑎

𝑏 +
𝐶𝑝𝑎
𝐶𝑥𝑏5 𝐷2𝛿2

𝑝(𝑏2 − 𝑥2
𝑜) −

𝐶𝑝𝑎
𝐶𝑥𝑏3 𝐷𝛿𝑜𝑥𝑜].

(6)

Figure 2: Monte-Carlo and analytical results of the gain
factor dependence on dispersion for Case 1 with 𝜎𝑒𝑥 = 1 m,
𝜎𝑖𝑥 = 1 m, 𝛿𝑝 = 1, 𝐶𝑝/𝐶𝑥 = 2.

Using arbitrary parameters, the dependence of the gain
factors on the dispersion function under different conditions
is calculated and shown in Fig. 2. The Monte-Carlo results
show a good agreement with the analytical formula. We see
that using dispersion alone can realize dispersive cooling
and a factor of 1.4 is achieved for the horizontal cooling rate.
This effect is mainly due to the Gaussian e-beam distribu-
tion, which naturally provides the transverse gradient of the
longitudinal force. The details of the explanation can be
found in Ref. [5]. When beam displacement is applied, it
shows that the horizontal gain factor drops off and the maxi-
mum value of 𝑘𝑥 decreases to 1.1. This is due to the fact that
the displacement reduces the average cooling force on the
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ion beam, which is density-dependent, thereby weakening
the dispersive cooling effect as shown by the second term
in the bracket of Eq. (6). Meanwhile, the third term in the
bracket depends on both energy offset and beam displace-
ment. The increase and decrease of the horizontal cooling
rate can be adjusted by the product of the two values. This
conclusion agrees with Ref. [1, 4]. As shown in Fig 2, the
maximum value of 𝑘𝑥 can reach 1.75 by using 𝑥𝑜 = 1.0 m and
𝛿𝑜 = −1.5, even though the beam displacement introduces
a certain degradation of the horizontal cooling rate.

However, an energy mismatch between electron and ion
beams may result in a circular attractor in the longitudinal
phase space of the ion bunch. If the relative shift exceeds a
critical value, beam heating instead of cooling may occur [7].
Therefore, the method using energy offset to realize disper-
sive cooling needs to be carefully calculated and evaluated
in practical applications.

Case 2: Gaussian E-Beam with Space Charge 𝐾𝑠𝑐
and Beam Displacement 𝑋𝑜

Another method to realize dispersive cooling relies on the
space charge effect of the e-beam, which in combination with
a beam displacement can generate the transverse gradient of
the longitudinal force [2, 3]. The radial-dependant velocity
deviation in the longitudinal direction will be produced due
to the space charge effect. Here we assume a parabolic
velocity profile, the final result of the two gain factors is

𝑎 = √𝜎2
𝑒𝑥 + 𝜎2

𝑖𝑥

𝑏 = √𝜎2
𝑒𝑥 + 𝜎2

𝑖𝑥 + 𝐷2𝛿2
𝑝

𝑐 = √𝜎2
𝑒𝑥 − 𝜎2

𝑖𝑥 − 𝐷2𝛿2
𝑝

𝑘𝑝 = 𝑒− 𝑥2𝑜
2𝑏2 [𝑎3

𝑏3 + 𝑎
𝑏5 𝐷2𝛿2

𝑝𝑥2
𝑜

− 𝑎
𝑏5 𝐷𝐾𝑠𝑐𝑥𝑜(2𝜎2

𝑒𝑥𝑏2 − 𝑥2
𝑜𝑐2)]

𝑘𝑥 = 𝑒− 𝑥2𝑜
2𝑏2 [𝑎

𝑏 +
𝐶𝑝𝑎
𝐶𝑥𝑏5 𝐷2𝛿2

𝑝(𝑏2 − 𝑥2
𝑜)

+
𝐶𝑝𝑎
𝐶𝑥𝑏5 𝐷𝐾𝑠𝑐𝑥𝑜(2𝜎2

𝑒𝑥𝑏2 − 𝑥2
𝑜𝑐2)].

(7)

It shows that the first and second terms in the bracket come
from the Gaussian e-beam distribution, which has already
been discussed above. The third term is of interest to us,
and it is directly determined by the e-beam space charge
and beam displacement. We see that the sign of this term
also depends on the electron and ion beam parameters. Con-
sidering arbitrary parameters, a comparison between the
Monte-Carlo calculation and analytical formula is shown
in Fig. 3. It is clear that beam displacement and the space
charge effect contribute to dispersive electron cooling. As
discussed in Ref. [2, 3], an outward displacement of the e-
beam is required for the increase of the horizontal cooling
rate, which is consistent with our result. The equation also
shows that a larger 𝐾𝑠𝑐 can improve the rate redistribution

Figure 3: Monte-Carlo and analytical results of the gain
factor dependence on dispersion for Case 2 with 𝜎𝑒𝑥 = 1 m,
𝜎𝑖𝑥 = 1 m, 𝛿𝑝 = 1, 𝐶𝑝/𝐶𝑥 = 2.

effect. However, a strong space charge field is not desirable
for cooling, since the transverse drift velocity and the longi-
tudinal velocity deviation have a significant influence on the
cooling process. Therefore, when studying dispersive elec-
tron cooling, the value of 𝐾𝑠𝑐 or the e-beam density should
be carefully determined according to the beam energy and
cooling requirements.

Case 3: Uniform E-Beam with Infinite Radius 𝑅𝑒,
Space Charge 𝐾𝑠𝑐, and Beam Displacement 𝑋𝑜

In the above, we investigated two methods that can be
used to realize dispersive cooling for a Gaussian e-beam. In
addition to the energy offset and space charge effect, we see
that the e-beam itself also contributes to the rate redistribu-
tion effect, since the Gaussian density distribution naturally
provides a transverse gradient of the longitudinal force. In
fact, a uniform or hollow e-beam is much preferable for most
electron coolers to avoid beam losses due to recombination,
overcooling and instabilities [8,9]. Therefore, it is necessary
to study the rate redistribution effect for these two e-beams.
Here we only discuss the uniform e-beam.

We assume a uniform e-beam with an infinite radius that is
𝑛𝑒 ≡ constant. Since there is no density gradient, the energy
offset does not affect the dispersion cooling as discussed
in Case 1, and the density distribution will not provide the
transverse gradient of the cooling force. So, using the space
charge effect of the e-beam is the only useful approach. In
this case, the gain factors can be easily calculated

𝑘𝑝 =1 − 2𝐷𝐾𝑠𝑐𝑥𝑜

𝑘𝑥 =1 + 2𝐷𝐾𝑠𝑐𝑥𝑜𝐶𝑝/𝐶𝑥.
(8)

It shows the same conclusion that dispersive electron cooling
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can be achieved by the velocity deviation caused by the e-
beam space charge, combined with a beam displacement.

Case 4: Uniform E-Beam with Finite Radius 𝑅𝑒,
Space Charge 𝐾𝑠𝑐, and Beam Displacement 𝑋𝑜

For a uniform e-beam with a finite radius 𝑅𝑒, the density
distribution is

𝑛𝑒(𝑟) = { constant, 𝑟 ⩽ 𝑅𝑒
0, 𝑟 > 𝑅𝑒. (9)

For this distribution, we can say that there is a density gradi-
ent which is created by the density difference between the
inside and outside of the e-beam. Due to the betatron mo-
tion, particles with large amplitude will cross the boundary
of the e-beam back and forth, thereby creating a transverse
gradient of the longitudinal cooling force. As a result, a uni-
form e-beam itself can also be applied to achieve dispersive
cooling as well as a Gaussian e-beam.

For simplicity, we only consider the space charge effect
𝛿𝑒(𝑟) = 𝐾𝑠𝑐𝑟2 and beam displacement. Based on the uni-
form density distribution (Eq. (9)), the analytical result of
the gain factors is calculated as below

𝑚 = 𝐸𝑟𝑓 ⎡⎢⎢
⎣

𝑅𝑒

√2𝜎2
𝑖𝑥

⎤⎥⎥
⎦

𝑛 = √𝜎2
𝑖𝑥 + 𝐷2𝛿2

𝑝

𝑎 = 𝐸𝑟𝑓 ⎡⎢
⎣

𝑅𝑒 + 𝑥𝑜

√2𝑛
⎤⎥
⎦

+ 𝐸𝑟𝑓 ⎡⎢
⎣

𝑅𝑒 − 𝑥𝑜

√2𝑛
⎤⎥
⎦

𝑏 = 𝑒− (𝑅𝑒−𝑥𝑜)2

2𝑛2 (𝑅𝑒 − 𝑥𝑜) + 𝑒− (𝑅𝑒+𝑥𝑜)2

2𝑛2 (𝑅𝑒 + 𝑥𝑜)
𝑛3

𝑐 = 𝑒− (𝑅𝑒+𝑥𝑜)2

2𝑛2 − 𝑒− (𝑅𝑒−𝑥𝑜)2

2𝑛2

𝑛

𝑘𝑝 = 𝑎
2𝑚 −

𝐷2𝛿2
𝑝𝑏

√2𝜋𝑚
+ 𝐷𝐾𝑠𝑐𝑥𝑜

√2𝜋𝑚
(2𝑛2𝑏 − √2𝜋𝑎 − 𝑥𝑜𝑐)

𝑘𝑥 = 𝑎
2𝑚 +

𝐶𝑝
𝐶𝑥

⎡⎢
⎣

𝐷2𝛿2
𝑝𝑏

√2𝜋𝑚
− 𝐷𝐾𝑠𝑐𝑥𝑜

√2𝜋𝑚
(2𝑛2𝑏 − √2𝜋𝑎 − 𝑥𝑜𝑐)⎤⎥

⎦
.

(10)
It shows that the first and second terms of the gain factor
are due to the e-beam distribution, and the third term comes
from the space charge effect. A comparison of different
settings is shown in Fig. 4, and the Monte-Carlo results
agree well with the analytical formula. We see that the rate
redistribution effect strongly depends on the e-beam radius,
since it directly determines how many particles can see the
density gradient. If the e-beam radius is smaller than the
ion beam, it is easy to realize dispersive cooling with small
dispersion. Otherwise, dispersive cooling is less likely to
occur unless the dispersion is large enough.

SUMMARY AND DISCUSSION
In electron cooling, transverse cooling is usually weaker

than the longitudinal direction. For this reason, dispersive

Figure 4: Monte-Carlo and analytical results of the gain
factor dependence on dispersion for Case 4 with 𝜎𝑖𝑥 = 1 m,
𝛿𝑝 = 1, 𝐶𝑝/𝐶𝑥 = 2.

electron cooling is an effective scheme to redistribute the
cooling rate, especially for future high-energy coolers. In
this paper, we investigated several approaches that can be
applied to achieve dispersive electron cooling. It is demon-
strated that beam energy offset, transverse displacement,
density distribution and space charge effect of e-beam all
contribute to the rate redistribution in dispersive cooling.
For the first time, we demonstrate that a transverse uniform
e-beam with a finite radius can be applied in dispersive cool-
ing. Based on a linear cooling force model, we present an
analytical formula for numerically estimating the cooling
rate redistribution effect. Moreover, a Monte-Carlo calcula-
tion and numerical simulation are also carried out, and all
results show good agreement with the analytical model.

As previously discussed, the beam energy offset and dis-
placement may affect the cooling performance and may in-
duce some undesired effects such as circular attractor or even
beam heating. So, these two approaches should be carefully
calculated and evaluated in practice. Moreover, since the
strong dependence of the space charge effect on beam en-
ergy, the method using the velocity deviation is only suitable
for low-energy beam cooling, such as conventional electron
cooling with electron energies below a few MeV. For high-
energy beam cooling, such as EIC, where e-beam energy
would reach tens or hundreds of MeV, the method employing
beam density is much preferable. However, these factors
in dispersive electron cooling have not been well explored
through experiments. The influences of these factors on the
cooling rate need to be further investigated. Additionally, the
effects induced by the dispersion function, such as ion beam
dynamics and IBS, require comprehensive exploration. It’s
also important to note that the dispersion function in accel-
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erators is quite limited. Therefore, considering all the above
points, dispersive cooling needs further extensive research
in the future.
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