

Scalable HV-modules for a magnetized relativistic electron cooler and possible applications

Kurt Aulenbacher, Helmholtz Institut Mainz (HIM) Cool-21, Novosibirsk 2021, November, 3 Presenting work by HIM Section ACID-II (K.A. T. Beiser, J. Dietrich and W. Klag), and Group of V.V. Parkhomchuk, V. Reva at BINP

,

- Introduction : Accelerator research at HIM
- BINP/HIM turbine powered prototype for HESR cooler
- Using the prototype for physics programme

Introduction: What is HIM ?

- A joint venture between University Mainz & GSI
- Founded 2009...(10 years anniversary June 2019)
- Scientific focus: Physics which can be performed at GSI & FAIR
- Six HIM-research Sections: (1) Hadron-spectroscopy, (2)Hadronstructure (PANDA) (3)Theory (e.g. lattice QCD) (4)Super-Heavy Elements (two sub-sections) (5) Matter & Antimatter
- And last but not least: (6) Accelerators and integrated detectors with two subsections ACID-I, -II.
- Total staff & students ~ 150 people

Accelerator research at HIM

Objectives of HIM-section Accelerators and integrated detectors (ACID)

- FAIR: HESR-Cooler support: Beyond 2MV:→4-8MV (ACID-II, head: Kurt Aulenbacher)
- Provide accelerator solutions for SHE research by GSI and JGU groups: low beta SRF ion accelerator cavities (also research for NICA project) (ACID-I, head Winfried Barth)

- ACID-II cooler group does R&D on small, well defined aspects related to the design of relativistic magnetized coolers
- Such a scale of research is well adapted to the possibilities of HIM (somewhat in between university research and "big science")
- Test set-ups for collector optimization & control, non invasive beam diagnostics (Talk by Th. Beiser)
- Ongoing projects: turbines as power generators for higher voltages >2MV
- Multi-platform design to achieve several MV range for HESR (2022-2026)
- Joint effort to have "full energy" antiproton cooler at HESR (2026+)
- Applied/fundamental research with Multi-Platform (2022+)

- More cooling power needed due to stronger beam/target interaction
 - \rightarrow Magnetization of beam required!
- Powering of continuous solenoid channel in DC acceleration stage
- Powering of terminal electronics, source/collector
- Power requirement many kW for supply floating at U>2MV

Conventional solutions: transformer/insulating shaft: May become cumbersome or even unfeasible under these conditions

holtz Institute Mainz

The turbine approach - old results

Solenoids must be powered by floating power supply (e.g. isolated turbogenerator)

- Not realized for Jülich 2MV-cooler...
- 19th century technology but still requires mechanical systems engineering &quality control
- \rightarrow commercial product should be reliable
- Turbine operated > 1000 hours without failure or relevant wear of bearing at 5kW
- Lubrication of bearings is needed, but minimal (remotely controlled, <0.1 cm³ once in 1000 hours)
- test of turbine (& lubrication unit) in 10 bar pressurized vessel successful
- Turbine with gas bearings available, if neccesary

5kW Turbogenerators (company: DEPRAG, product name "green energy turbine") have been purchased

- Ball bearings (2014)
- Gas bearings (2017)
- See our contributions to the cooler conferences

Helmholtz Institute Mainz

ASSOCIATION

GET after operation($T_{\mathsf{air,out}} = -31\,^\circ\mathsf{C}$)

- Cooling of compressed gas reduces efficiency.
- But then, exhaust gas is also cooled due to adiabatic expansion which may help dealing with heat generated by loads inside HV-tank
- Wall plug to terminal efficiency: ~20%
- Compressor wall plug requirement for 8MV HESR cooler would be large (300-500kW), but not impractical

HIM-BINP-cooperation 2015-2022

Second stage, including acceleration stage (not source) is in fabrication at BINP

- First 600kV Module designed and build by BINP
- Operated at >100kV in air
- Final assembly and testing at BINP
- Transport to HIM in 5/2018
- Re-assembly and system test took place successfully at HIM in September 2018

See: 12th Workshop on Beam Cooling and Related Topics COOL2019, Novosibirsk, Russia JACoW Publishing

doi:10.18429/JACoW-COOL2019-MOX02

Some impressions

Compressor station for up to three turbines

Turbine (in box) hanging from HV-deck

HV-generator

HV-tank

- 2018-2019: Pressure tank • specification and ordering via international call for tender.
- Order was placed August 2019, • predicted delivery time 11 month. \rightarrow
- 3/2020 start of pandemic lockdowns • \rightarrow severe delays, delivered in Mai 2021

ASSOCIATION

HELMHOLTZ ASSOCIATION The "BIG Blue Bubble" HV-Tank

Preparation for HV-operation

Schaltschema des Turbinenkreislaufs

- Tank can accommodate two platforms + gun and collector
- operation with Nitrogen in closed cycle,

HELMHOLTZ

ASSOCIATION

- Operation turbine circuit investigated by M. Wirsum, Institut f
 ür Kraftwerkstechnik, RWTH Aachen
- Instrumentation is currently being installed,
- Turbine tests in tank beginning early 2022

JOHANNES GUTENBERG

UNIVERSITÄT

Preparation for HV-operation

Schaltschema des Turbinenkreislaufs: Komponenten und Bezeichnung

- Tank can accommodate two platforms + gun and collector
- operation with Nitrogen in closed cycle,

ELMHOLTZ

ASSOCIATION

- Operation turbine circuit investigated by M. Wirsum, Institut f
 ür Kraftwerkstechnik, RWTH Aachen
- Instrumentation is currently being installed,
- Turbine tests in tank beginning early 2022

IOHANNES GUTENBERG

Preparation for "scalability"

V. Parkhomchuk et al. Design study for the high voltage test bench of 1.2 MeV , BINP 2019

Figure 1.2: General picture of test-bench 1.2 MeV

- 2018-2019: Design study by BINP for usage of Prototype stage at HIM
- New project: fabrication of second platform to test:
 - scalability (2*600kV)
 - heat management
 - machine protection
 - voltage stability
 - acceleration tubes & vacuum
- Not yet part of project:
 - electron souce & collector
 - return beam line

Conclusion

- Turbines are qualified as floating power generator for electron coolers
- BINP has produced turbine driven HV-Generator for 600 kV+ several kW of floating power on terminal
- Extensive testing at HIM planned for 2022
- Qualified system should be scalable towards HESR energies

However, Electron cooler presently not "top priority" at FAIR What will we do with the prototype, until HESR becomes available?

Device presently is a "technology platform" → Can it used for something "scientific" ?

Using the device for applied/fundamental research ??

There are many 600kV DC- accelerators in the world, but.... "Big Blue Bubble" has special features.

MHOLTZ

- Large power/good cooling available on terminal
- Lot of space at the terminal
- No SF6 needed.
- Accessibility relatively good

What could we do with it?

Future extension plans: Medical research

Recent Funding proposal: Xray "flash guidance dosimetry"

C

HELMHOLTZ

ASSOCIATION

JOHANNES GUTENBERG

Principle of "Microflash" radiation therapy

J. Winter at al. Physics and Imaging in Radiation Oncology 14 (2020) 74-81

beam is focused towards highly eccentric beam spot 15*0.05 mm

- "microstructured" radiation field after collimator
- Cooling in anode is done by electron scattering, not conductivity (heat capacity limit vs. conductivity limit)

Imminent problem of such devices:

Dosimetry & targeting

ELMHOLTZ

ASSOCIATION

HELMHOLTZ

Helmholtz Institute Mainz

ASSOCIATION

External experiment: Dosimetry of X-ray flashes (ns, >100 Gray/s peak dose rate)

Photosource "STEAM"

- -will be used with very low duty cycle
- 5ns pulses, 2.5 A, 1-10Hz
- Home build K2CsSb cathode

HELMHOLTZ

ASSOCIATION

- "Cheap" 2nd harmonic Nd:Yag Laser needed
- \rightarrow Flash dosimetry

Particle Physics at Big Blue Bubble?

A photosource can also produce spin-polarized beams.

Interesting projects, discussed at SPIN 2021

(both profit from Mott polarimtry with good in the ~1MeV energy range)

- Spin correlations in Moller scattering of relativistic particles (already performed at MAMI, 3.5MeV): Michał Dragowski et al.: Measurement of Polarization Transfer in Møller Scattering
- Electron EDM in all electrostatic ring with two energies (300keV, 600keV), suggestion from JLAB: R.Suleiman, V.S. Morozov and Ya. S. Derbenev: EDM in small rings

Thank you!

JGU

The turbine approach

(GSI Helmholz) N2-Austritt ZA 2 VSD Sicherheitsventil PI ONTIS Kondensatal Anschluss für 2.

1.5 - 15.11.2013 - d 2013 1115 KAV_R und I Schnellbaukasten_FP.pp

Schema Installation Uni Mainz

- standard screw compressor generates pressurized medium (dry air or others)
- Guided into pressurized HV-tank (insulating pipes in tank)
- Gas expands in turbine and is redirected to compressor inlet

HELMHOLTZ

Helmholtz Institute Mainz

ASSOCIATION

Near (and far) future extension plans

Conclusion

- Turbines are qualified as floating power generator for electron coolers
- BINP produces turbine driven HV-Generator for 600 kV+ several kW of power on terminal
- Extensive testing at HIM planned beginning 2018
- Extension towards real electron beam operation will follow
- Qualified system will be scalable towards HESR energies

2.2 System Overview

HELMHOLTZ

Helmholtz Institute Mainz

ASSOCIATION

- Investigate source/collector system in order to define expected operation conditions at 8MV!
- Only the blue part

 source and collector –
 has to be build for these investigations
 (no MV part is needed)
- \rightarrow Build cooler test stand at HIM

HELMHOLTZ LASSOCIATION

Helmholtz Institute Maii

Poster by Max Bruker, Monday

Selected results

- Long term stable operation with magnetized beam
- No significant vacuum increase due to desorption in collector
- Demonstration of effective capture of backstreaming electrons from collector

HELMHOLTZ

ASSOCIATION

 Investigation of magnetron like discharges (due to unsuitable geometry in gun region)

HELMHOLTZ ASSOCIATION

Poster by Max Bruker, Monday

6

HELMHOLTZ

ASSOCIATION

Loss is believed to be due to scraping of secondary beam on aperture at collector entrance (ground potential) After modifaction "true" loss could be measured with nA resolution

Turbines (?) !

First Steam-Turbine driven ship Charles Parsons –Turbinia (1897) Source: Wikipedia

- Use of "turbogenerators" (gas/steam turbine + electrical generator?)