Electron Cooling of Molecular Rotations in the Low-Energy Electrostatic Storage Ring CSR

Andreas Wolf Cryogenic Storage Ring (CSR Heidelberg) electron cooling team

Max Planck Institute for Nuclear Physics, Heidelberg, Germany

COOL2021 – Online organized by BINP Novosibirsk 1-5 November 2021

Outline

- Energy damping and electron collisions
- The CSR laboratory
- Rotational cooling of CH⁺ ions
 CSR measurement and quantitative analysis
- Conclusions

Energy damping and electron collisions

Energy damping in ion beams

C

-

Charged-particle collisions and internal states

Electron $\omega = \frac{E_e - E_g}{\hbar}$ E_g Dipole moment

Electric field strength

Charged-particle collisions and internal states

3

The CSR laboratory

CSR photocathode electron cooler

Velocity-matched merged beams at low energy

1 eV photocathode electron beam deceleration and transport:

A. Shornikov et al., PRSTAB 17, 042802 (2014)

7

Rotational cooling of CH⁺ ions

Radiative cooling only

Rotational cooling of CH⁺ ions

Rotational electron cooling measurement

Electron interaction cross sections

Co-moving electron energy distribution

 $k_B T_\perp = 2.25~{
m meV}$ $k_B T_\parallel = 0.6~{
m meV}$ (effective)

 $n_e = 7 \times 10^5 \text{ cm}^{-3}$ 80 cm merging $n_e = 4 \times 10^4 \text{ cm}^{-3}$ ring-averaged

Cooling and excitation cross sections

Calculated in dipole–Born approximation (Coulomb scattering waves)

Rotational electron cooling measurement

Probing results for radiative cooling only

Rotational electron cooling measurement

Rotational cooling of CH⁺ ions

Quantitative analysis

Start at third probing window

Rate equations for *J***-level populations:**

Radiative cooling only

Start at third probing window

Rate equations for *J***-level populations:**

Radiative cooling only

+ J-dependent loss by recombination of CH⁺

÷

Start at third probing window

Rate equations for *J***-level populations:**

Radiative cooling only

+ J-dependent loss by recombination of CH⁺

> Inelastic collisions in Coulomb–Born approximation

÷

Start at third probing window

Rate equations for *J***-level populations:**

Radiative cooling only

+ J-dependent loss by recombination of CH⁺

> Inelastic collisions in Coulomb–Born approximation

Inelastic collisions from recent *R*-matrix molecular calculations

J. R. Hamilton, A. Faure, and J. Tennyson, Mon. Not. R. Astron. Soc. 455, 3281 (2016).

Experimental $J = 1 \leftrightarrow 0$ inelastic cross section

Rate coefficients in cold plasma for J-changing electron collisions (astrophysics etc.)

$$\alpha_{1,0}(T) = \langle v\sigma_{1\to 0}(v) \rangle_T$$

$$\alpha_{0,1}(T) = \langle v\sigma_{0\to 1}(v) \rangle_T$$

Thermal rate coefficients with the fitted $0 \leftrightarrow 1$ cross sections

Hamilton et al. (2016) *R*-matrix theory

Rotational cooling measurement at CSR

Coulomb–Born

(~43% relative uncertainty)

Conclusions

Cryogenic photocathode electron cooler in CSR with electron energies ≲ 10 eV

Last week (end Oct 2021): cooling force measurements for a 4.5 eV electron beam

Electron cooling of molecular rotations substantially speeds up rotational relaxation in a stored ion beam

Rotational electron cooling rates measured by laser probing on diatomic hydride CH⁺

Damping of oscillating dipoles in electron collisions: theory quantitatively confirmed

Outlook

Stronger electron cooling expected for smaller rotational constants (heavier molecules)

Electron cooling expected to remain significant for molecules without dipole moment

In development: general, sensitive laser probing of rotational populations based on spectrally resolved, multistep photodissociation

C

MAX-PLANCK-GESELLSCHAFT

Merged electron beam experiments at the CSR

Daniel Savin

Xavier Urbain

UCLouvain

UNIVERSIT

Daniel Zajfman Oded Heber

Weizmann Institute of Science

Holger Kreckel

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK

Stefan Schippers

Alexander Terekhov

Rzhanov Institute of Semiconductor Physics Acad. Sci. Novosibirsk

Andreas Fleischmann **Christian Enns**

UNIVERSITÄT HEIDELBERG ZUKUNFT **SEIT 1386**

Kirchhoff Institute of Physics

