

W. Höfle, J. C. Oliveira, C. Carli, F. Caspers, B. Dupuy, D. Gamba, R. Louwerse, L. Ponce, V. R. Myklebust, S. F. Rey, L. Thorndahl

Acknowledgements: GSI, CERN BE-OP, SY-RF, TE-VSC, TE-MSC, EN-MME, EN-CV

- LHC and all injectors were stopped in December 2018 to permit implementation of the hardware modifications of the LHC Injector Upgrade Project (LIU)
 - □ start-up of AD with beam re-scheduled due to COVID-19
 sanitary crisis to mid 2021 → AD without beam for more than
 two years, 2020 shutdown work impacted due to COVID-19
- Considerable modifications in the AD complex of accelerators
 - □ New antiproton target, new RF system in AD (power system and LLRF), new PLC controls, new software for all RF
 - □ Migration of all users from AD to ELENA in LS2
 - □ AD magnet consolidation and new LNE00 extraction from ELENA → partial dismantling of stochastic cooling system

AD Basic Parameters

Circumference	182	m
Production beam	$1.5 x 10^{13}$	protons/cycle
Injected beam (~record)	$5x10^{7}$	pbars/cycle
Beam momenta (max-min)	3.57 – 0.1	GeV/c
Plateaus for stochastic cooling	3.57 and 2	GeV/c
Transverse emittances	200 - 1	π mmm rad
Momentum spread	$6x10^{-2} - 1x10^{-4}$	δp/p
Vacuum pressure	$< 4x10^{-10}$	Torr
Cycle length	~100	S
Deceleration Efficiency	~85	%

Production Beam very challenging for PS (26 GeV/c p⁺) \rightarrow batch compression Bunch rotation with 10 MHz pulsed cavity system in AD after injection

Dismantling of Power System

 All 48 power amplifiers removed including all associated RF cabling and fan-out, DC powering and water cooling

Removal RF lines to kickers

 $\lambda/4$ "super-electrodes" as used in pick-up and kicker loads inside vacuum tank

Two kicker tanks (H, V)

 Longitudinal signal split equally to drive common mode on the transverse kickers

W. Höfle et al.

Dismantling of Power System

 All 48 power amplifiers removed including all associated RF cabling and fan-out, DC powering and water cooling

Reflectometry before dismantling

Reflectometry was used to have reference measurements for the length of the lines and to check for bad contacts before dismantling

example of time domain reflectometry (with NWA, "synthetic pulse") on line connecting amplifiers to kickers

matching inside the tank can also be checked (-17.7 dB)

small reflections at visible

CÉRN

- Reference measurements for signal path lengths of notch filter
 - □ 3.57 GeV/c new optical delay line notch filter
 - \square 2.0 GeV/c notch filter using existing legacy cabling plant

■ 3.57 GeV/c legacy notch filter with copper cables

 Comparison of 3.57 GeV/c new optical path notch filter and legacy notch filter with copper cables

Fiber notch filter: 1st test with beam 2018 \rightarrow operationally used all the time in 2021

W. Höfle et al.

Cool'21

Novosibirsk, Russia 2021

- Due to venting of the machine for the magnet exchanges bake-out before start-up was required
- Delicate, as equipment dates from the CERN AC (anti-proton collector machine) that did not require a baked vacuum
- Baking of kicker tanks not regularly needed (vacuum not opened), delicate because of the water cooling pipes inside the vacuum (for the cooling of the RF loads)
- A leak was detected after bake-out in spring 2021 between water cooling pipes and beam vacuum on the horizontal kicker tank
- A similar leak was fixed during the initial commissioning period of AD in 2000 by araldite treatment

Cool'21

Novosibirsk, Russia 2021

Vacuum Issue at start-up 2021 (2)

- Run of 2021 saved by using year 2000 procedure for repairing the vacuum leak
 - $\hfill\square$ injection of resin, curing with heated compressed hot air
 - □ the resine is a special analdite type of mixture with high viscosity
 - water cooling volume completely filled with resin during the procedure, while tank is kept heated and under vacuum

Issues at recommissioning

- Despite care taken with reference measurements the scale of the dismantling and changes fine adjustment of delays and relative delays required more time than expected
 - □ essentially most difficult start-up since initial commissioning
 - storing beam at 3.57 GeV/c for ~1.5 hours possible by increased cooling (magnet cooling limitation)
 - in year 2000 it was possible to keep machine at 3.57 GeV/c without boosting cooling
 - initially low intensity
- Beam transfer function measurements require additional amplification of signals (additional losses due to cables used for this type of measurement (potential improvement possible)
- Combination of electrically non-centered transverse signal from pick-ups and residual longitudinal kick when transversely exciting can lead to confusion when measuring BTFs

□ new machines: foresee a means to center your signals

Commissioning with beam

- Delay adjustments are critical to the level of 30 ps at 1.6 GHz
 - \Box 1 GHz \rightarrow 50 ps equivalent to 18 degrees
 - \Box response within entire frequency range matters
- Observation of Schottky spectra essential
 - \Box injected beam: $\Delta p/p$: +/- 3% filling momentum aperture
 - \Box Bunch rotation (h=6, 10 MHz) $\rightarrow \Delta p/p: +/- 0.75\%$
 - \square stochastic cooling at 3.57GeV/c and 2 GeV/c
- Schottky spectra available from the longitudinal magnetic pick-up
 - □ analogue down conversion from 2xf_{rev} to a common IF of 50 kHz for different energies, followed by digitization

Beam transfer functions (BTFs)

- used beam transfer function to adjust overall delay
- order of commission at a given energy important
 - \Box longitudinal cooling before transverse cooling
 - □ if beam degrades it can repeatedly longitudinally cooled to be reused in the same fill for more BTFs
 - magnitude response of BTF can be used to estimate overall bandwidth of system
 HSt. kicker at 3.57 GeV/c on 02.09.21

example: Magnitude response at 3.57 GeV/c, horizontal plane, open loop

Examples of BTFs 3.5 GeV/c, longitudinal plane, 1200 MHz

span: 5 MHz

Longitudinal BTF measured with notch filter open (short branch only) \rightarrow align open loop BTF circles in polar coordinates towards -1 by adjusting loop delay

Examples of BTFs 3.5 GeV/c, horizontal plane, 1200 MHz

span: 5 MHz

transverse signals contain longitudinal signal

→ improvement of symmetry needed (pick-up electronics, kicker powering, beam position), phase of longitudinal unwanted signal oriented also to -1 in polar plane; loop delay rotates circles; non-optimal phase advance rotates 1-q and q group circles in opposite direction

Examples of BTFs 2 GeV/c, vertical plane, 1100 MHz

span: 5 MHz

transverse signals contain longitudinal signal

 \rightarrow improvement of symmetry needed (pick-up electronics, kicker powering, beam position); transverse cooling is heating longitudinally

Monitoring of optical delay notch

- Notch filter with optical delay line is monitored in operation using a compact Network Analyser
 - □ In between cycles the notch at the 1000th revolution harmonic is checked → delay correction applied if notch frequency deviates; nota bene: long fiber is in a temperature stabilized box kept well above ambient temperature (i.e. by heating)

Monitoring of optical delay notch

Correction applied to keep notch (1000th harmonic) frequency at the canonical value of 1.589411 GHz
 notch depth maintained at >30 dB

September \rightarrow October 2021

September \rightarrow October 2021

Performance with beam longitudinal cooling

no cooling, only bunch rotation $\Delta p/p$: +/- 0.75%

3.5 GeV/c 2.0 GeV/c

Performance with beam 3.5 GeV/c

Performance with beam transverse cooling at 3.5 GeV/c:

□ Horizontal:

 $230 \rightarrow$ 10π mm mrad

 \Box Vertical:

Due to new software relative figures only can be trusted

horizontal

W. Höfle et al.

Cool'21

Novosibirsk, Russia 2021

Performance with beam 2.0 GeV/c

Performance with beam transverse cooling at 2.0 GeV/c:

- □ Horizontal:
- \Box Vertical:

18.5 \rightarrow 12.6 π mm mrad

 $28.9 \rightarrow 15.8 \pi$ mm mrad

vertical

W. Höfle et al.

Cool'21

Novosibirsk, Russia 2021

Performance with beam intensity

□ superconducting beam current transformer

- Define a consolidation program for kickers and power amplifiers
- Implement optical delay notch filter 2 GeV/c
- Automate transfer function measurements to enable regular checks and where required cycle-to-cycle adjustments
 - \Box non-invasive observables
 - beam loss
 - Schottky spectra
 - Potential of IPM monitor for transverse emittance measurements to be explored

- Repair of leak in horizontal kicker tank water cooling after bake-out successful
- Complete recommissioning of power RF system of stochastic cooling after CERN long shutdown 2
- Hardware transfer functions and Beam transfer functions extensively used to set-up the system
- New PLC system and control room level software
- Automatic notch filter frequency stabilization by cycle-to cycle hardware transfer function measurement

Spare Slides

W. Höfle et al.

Cool'21

Novosibirsk, Russia 2021

27

Brief History of Stochastic Cooling at CERN

- 1968 Idea of Stochastic Cooling by Simon van der Meer
- 1972 First observation of Schottky noise at ISR
- 1972 Theory of Transverse Stochastic Cooling
- 1975 First experimental observation in ISR
- 1975 pbar accumulation schemes for ISR and SPS
- 1978 Refinement of Theory and detailed experimental verification at ICE
- 1982 accumulation of several 10¹¹ pbar in AA
- 1986 Construction of AC
- 1996 End of operation of AAC (AA+AC)
- 1998 AD, "Anti-Proton Decelerator" converted from AC
- 2016 ELENA commissioning \rightarrow post-deceleration from 100 MeV/c to 100 keV
- 2018 Start of long shutdown #2 "LS2" at the end of the 2018 run
- 2021 Re-start, ELENA supplies anti-protons to users
- Today stochastic cooling is used at CERN only in AD
 - \Box single band (~0.85 GHz ~1.7 GHz)
 - □ All three planes: H, V, and filter-cooling for longitudinal cooling
 - D pick-ups and kickers with combined signals for all long. plane, movable plates for pick-up used
 - □ 48, 100 W amplifiers (GaAs from 1980's)
 - Beam to users (2000: 1550 h \rightarrow > 5000 hours / year today, 90% availability, AD uptime 95%)
 - \Box Consolidation program under way: expect operation of AD/ELENA \rightarrow 2030 +

Incoming beam: Batch Compression in PS for AD

■ AD: $f_{\text{rev, AD}} = 10/3 f_{\text{rev, PS}} \rightarrow \text{Compress batch to} < 30\% T_{\text{rev}}$

■ Slowly change $h = 8 \rightarrow 9 \rightarrow 11 \rightarrow 13 \rightarrow 15 \rightarrow 17 \rightarrow 20$

\rightarrow Compress four bunches to 20 % of the machine circumference

Circumference	Design	Achieved
Intensity at 3.5 GeV/c	$5x10^{7}$	$5x10^{7}$
Cooling Time	20 s	20 s
Hor Emittance (95%)	5π mm mrad	3π mm mrad
Ver Emittance (95%)	5π mm mrad	4π mm mrad
Momentum width	+/- 0.5x10 ⁻³	+/- 0.35x10 ⁻³
Cycle length	60 s	60 s – 100 s

Performance as reported in F. Casper, EPAC'00, T. Eriksson Cool'13

Circumference	Design	Achieved
Intensity at 3.5 GeV/c	$5x10^{7}$	$(5x10^{7})$
Cooling Time	15 s	15 s
Hor Emittance (95%)	5π mm mrad	2.9 π mm mrad
Ver Emittance (95%)	5π mm mrad	3.3π mm mrad
Momentum width	$+/-0.15 \times 10^{-3}$	$+/-0.08 \text{x} 10^{-3}$
Cycle length	60 s	60 s - 100 s

Performance as reported in F. Casper, EPAC'00, T. Eriksson Cool'13

Optical delay notch filter

Built at GSI at the request of CERN and assembled in lab at CERN (Wolfgang Maier, GSI)

Optical delay notch filter

