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• Driven by necessity!
– Counter emittance growth in 2.5 MeV proton beam.

– Achieve low energy spread.

• Study large incoherent tune shift
– Space charge forces limits the minimum emittance reached by 

coolers.

– Electron coolers typically operate at tune shifts < 0.01 – 0.1.

• Study instabilities
– Interplay of wakefields, space-charge and electron cooling.

– Electron cooling as a knob for space charge parameter.

• Non-linear Integrable Optics with SC and cooling
– Realize NIO in the multi-particle regime.

Goals
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S. Nagaitsev et al., Proceedings Particle 
Accelerator Conference, 1995, pp. 2937-2939

A. Burov, Phys. Rev. Accel. Beams 22, 034202, 2019
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The Integrable Optics Test Accelerator will be configured to recirculate 2.5 MeV 
protons.

Implementation
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e-

Dispersion is 0 at the electron lens.

C KE 𝝉𝐫𝐞𝐯 h 𝑵𝐛𝐮𝐧𝐜𝐡 𝑨𝒙,𝒚 𝝂𝒙,𝒚
39.96 m 2.5 MeV 1.83 μs 4 Coasting or 4 87, 78 μm 4.117, 3.632

G. Stancari et al, JINST 16 P05002, 2021, 
https://doi.org/10.1088/1748-0221/16/05/P05002

S (m)

https://doi.org/10.1088/1748-0221/16/05/P05002


Major sources of emittance growth: Space charge, 
Intra Beam Scattering, Residual Gas Scattering.

Operating Parameters
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Coasting Bunched
Current (mA) 2.25 6.25 0.248 1.24

Bunch Charge (nC) 2.28 11.4 0.113 0.565
Tune Shifts (Δ𝜈!,#) -0.076, -0.10 -0.38, -0.50 -0.076, -0.10 -0.38, -0.50

RGS (s) 𝜏$%&,'()*+,= 1060*, 𝜏$%&,-!= 25.8*, 𝜏$%&,-"= 15.8*

IBS 𝜏./&,!,#,' (s) 32.0, 20.9, 40.4 6.40, 4.19, 8.08 43.4, 29.9, 115 8.69, 5.97, 23.01

Cooling times (s) 1.00, 0.87, 0.496 1.00, 0.87, 0.992

𝝐𝒙,𝒚 (μm) 𝝈𝒑/𝒑 𝝈𝒔 (m)

4.3, 3.0 1.32 x 10-3 0.79

*Based on Peff = 4.2 x 10-8 Torr measured in Run 2. Aim 
to achieve Peff = 1 x 10-10 Torr by baking.
https://indico.fnal.gov/event/43231/contributions/187359/attach
ments/129996/167589/IBSatIOTAcolaborMeeting.pdf

Emittance growth and beam loss due to 
space charge under active investigation.



• Cooler parameters
– Electron source: DC 1.36 kV, 

10 mA, 𝟇12 mm, 1 V jitter, 
1400 K

– Solenoid: 0.1 T, 0.7 m, 
flatness: 2 x 10-4

• JSPEC simulations
– Only electron cooling and 

Intra-Beam Scattering.

– Halo formation due to IBS.

– No space charge!

Simulations in JSPEC
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Phase space scatter plots at t = 2 min.
• Very dense core. 
• Diffuse halo at an intensity of 10-3.
• Tune shift at core reaches -20!



Space charge forces will limit the equilibrium core density.
PyORBIT is an extendible particle tracking code with a PIC space-charge model. 
Implemented an electron cooler extension to enable cooling simulations with space-
charge.

Inclusion of Electron Cooling in PyORBIT
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Solenoid field, space-charge, 
electron cooling, IBS

Smaller segments

Ion SC kick

Cooling 
and EL kick

Symplectic
Solenoid 
transport 

• XY coupling
• Static space charge of the electron beam.
• Dynamic space charge of ion beam.



Use the Parkhomchuk cooling force model for a magnetized cooler.

Verified results between JSPEC without IBS and PyORBIT without space charge.

Benchmarking
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Parkhomchuk



Various scales determine cooling regime and numerical simulation parameters.

As the beam cools, 𝜏!, 𝑑!, 𝜆",! go down! Using fixed simulation parameters for now.

Relevant Scales
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Scales Values for coasting beam at 6.25 mA
e- Temperatures 𝑇$,% = 1407.35 K, 𝑇$,∥ = 22.27 K, 𝑇$,$'' = 34.69 K

p Temperatures 𝑇!,% = 8.66×10( K, 𝑇!,∥ = 1.01×10) K

p plasma period 𝜏! = 127 ns

p length scales 𝑑! = 29.1 µm, 𝜆",! = 4.98 mm

𝝉𝒓𝒆𝒗 𝚫𝐬𝐏𝐈𝐂 = 𝒄𝜷[𝚫𝐭𝐏𝐈𝐂] 𝚫𝐱𝐏𝐈𝐂 𝑵𝐦𝐚𝐜𝐫𝐨
1.83 μs < 20 cm [0.91 ns] 50/64 ~ 0.78 mm 105



Simulated cooling with space charge for the IOTA lattice at Δ𝜈5 = −0.5

Electron cooling can counter space-charge to some extent.

Preliminary Results at Design Current
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SC Only SC and ECool



Simulated cooling with space charge for the IOTA lattice at Δ𝜈5 = −0.1

70000 turns not enough. Very long term simulations required!

Low Current Starting Point
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SC Only SC and ECool



Scale cooling force by a factor of 10.

Good agreement within the core in the linear regime. Approximate method of speeding up simulations?

Artificially Strong Cooling
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baseline, 110 ms
force x 10, 11 ms



Start with a scaled cooling force 
and switch to the baseline while 
still in the linear regime.

Reconstructed Movie
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• Electron cooler is part of the e-lens program 
at IOTA and shares all hardware except for 
the electron source.

• Thermionic Gun
– Based on CERN Hollow Gun 1-in design.

– Cross check design using WARP and TRAK.

– Will be manufactured at U Chicago.

• Diagnostics:
– Protons: Beam Position Monitors, DCCT, 

Recombination Monitor

– Electrons: Faraday Cup, Profile monitor

Hardware
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• Design work
– Improve simulation fidelity, add non-uniform electron beam.

– Analyze long term validity of space charge model.

– Design electron source for cooling.

• Fabrication
• Experiments in IOTA
– Commission electron lens.

– Demonstrate cooling at low intensity.

– Remove NL magnet. Explore high intensity.

– Install anti-damper and study instabilities.

Future Work
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• Electron cooling at IOTA will increase proton lifetime and create low energy spread. Goal 
to explore large incoherent tune shift, study instabilities and NIO in the multi-particle regime.

• Implement using the e-lens setup with dedicated thermionic source for cooling. Operate with 
zero dispersion at the e-cooler. Space charge and Intra Beam Scattering (IBS) are main 
emittance growth drivers for 2.5 MeV proton operations.

• Simulations with electron cooling and IBS indicates the formation of a very dense core and a 
diffuse halo, not seen in practice. Developing simulations using PyORBIT which incorporates 
space charge, electron cooling and x-y coupling. Ongoing studies.

• Plan to establish electron cooling at low proton currents. Take turn-by-turn measurements of 
non-linear dynamics. Remove aperture restrictions and commission to high current, study 
instabilities and NIO in the multi-particle regime.

Conclusion
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• Baseline H0 production rate is about 6 kHz.

Appendix: Recombination Monitor
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Develops an instability. 
Probably not physical.

Appendix: Strong Cooling Movie
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