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Abstract

Relativistic magnetized electron cooling is one of the

techniques explored for achieving the ion beam luminosity

requirements of the presently designed electron-ion collider

(EIC) facility at Brookhaven National Lab. Because the

cooling system will have to operate in previously untested

parameter regimes, accurate computation of magnetized

dynamic friction is required at the design stage in order to

obtain reliable estimates of the cooling time. At energies of

interest to the EIC cooling system design, the beam-frame

interaction time in the cooler becomes short compared to

the plasma period, and some assumptions applicable to the

physics of cooling at lower energies become invalid in this

high-energy setting. We present and discuss the results of

first-principles modeling the magnetized dynamic friction

force in the strong-field, short-interaction-time regime, as

well as a parametric longitudinal friction force model that we

developed starting with a reduced ion-electron interaction

potential. The model parameters are related in a simple way

to the interaction time and the ion charge. We compare our

simulation results to the predictions of previously developed

theoretical models.

REDUCED 1D ION-ELECTRON

INTERACTION MODEL

We follow the general approach of Derbenev [1], wherein

the total time-dependent E-field at the location of the ion
®E(®r, ®v, t) is viewed as comprised of three contributions: (i)

⟨ ®E0⟩(®r, t), the Coulomb field from the bulk charge of the

electron distribution, (ii) ⟨∆ ®E⟩(®r, ®v, t), the dynamic friction

force, the occurrence of which is due specifically to the

modulation of the electron phase space distribution caused

by the presence of the ion, and (iii) ®E f l(®r, ®v, t), statistical

fluctuations due to irregularity of the electron distribution

at the microscopic scale:

®E(®r, ®v, t) = ⟨ ®E0⟩(®r, t) + ⟨∆ ®E⟩(®r, ®v, t) + ®E f l(®r, ®v, t). (1)

The friction force is then calculated along the ion trajectory:

®F(®r, ®v, t) = −Ze ⟨∆ ®E⟩(®r, ®v, t)
�

�

�

®r=®r(t), Û®r=®v(t)
. (2)

In practice, of interest is the dynamic friction force aver-

aged over the time it takes the beams to traverse the cooler

solenoid, which is what we compute in this paper. Further-

more, in this paper we limit discussion to the computation

of the ensemble-averaged expectation value of the friction
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force for the ion moving longitudinally (along the magnetic

field lines). We assume a constant and uniform magnetic

field in the solenoid.

By short interaction time we mean interaction time Tint
short compared to the beam-frame plasma period Tpl =
√

π/nerec2, where ne is the local, beam-frame electron num-

ber density (assumed constant over the spatial scales of inter-

est) and re = e2/(4πϵ0mec2) is the classical electron radius.

In the beam frame, the interaction time is Lorentz-contracted

by a factor of γ, and the plasma period is increased by a factor

of γ1/2 due to electron density dilation. Hence, high-energy

conventional cooling systems, both magnetized and unmag-

netized, that are designed to cool at γ ∼ 20− 300 will likely

operate in the short-interaction-time regime. The model

presented here assumes Tint << Tpl and leaves out the De-

bye screening of the ion potential and the corresponding

electron-electron interaction.

As a matter of convenience, we work in a reference frame

where the ion remains at rest at the origin of the coordinate

system during the interaction time in the cooler. In the beam

frame, the dynamics are non-relativistic. The friction force

is computed by adding up momentum kicks from binary

ion-electron interactions, subject to the background subtrac-

tion procedure described below. In the limit of a strong

magnetic field, to the leading order of canonical perturba-

tion theory (with a small parameter proportional to 1/B) the

electron gyrocenters are confined to cylinders of constant

radius equal to the electron’s initial impact parameter D.

Therefore, with the Larmor radius equal to zero in the limit

of infinitely strong magnetic field, in our model the electron

macroparticles move in an effective nonlinear 1D potential:

Üz(t) = −Zrec2 z

(z2
+ D2)3/2

, (3)

where Z is the ion charge number and the z axis is in the

direction of the magnetic field in the solenoid.

The effective potential is a “soft” nonlinear potential,

in the sense that the period of oscillations increases with

amplitude and both oscillatory and unbounded orbits are

possible. (The shortest possible oscillation period Tmin =

2π
√

D3/Zrec2 for a given impact parameter D is realized

in the limit of infinitely small amplitude.) Depending on the

initial conditions, the electron trajectory can be classified

as either unbounded, oscillatory, or technically oscillatory

but with a period of oscillation that is larger (possibly, much

larger) than the interaction time in the cooler. The net dy-

namic friction force on the ion is determined by contribu-

tions from these three orbit types and, due to the nonlinear

nature of the interaction potential, it has to be evaluated

numerically.
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A subtle point of critical importance in computing the fric-

tion force numerically is that, because the dynamic friction

force is due to the perturbation of the electron distribution

by the ion, it should be computed as the difference between

(i) the Coulomb force on the ion from the electron macropar-

ticles moving on the ion-perturbed orbits and (ii) the force

from the electron macroparticles with identical initial con-

ditions moving along the orbits not perturbed by the ion.

This approach to numerical computation of the dynamic

friction force has another important advantage: By virtue of

the perturbed and unperturbed trajectories having the same

initial conditions, one gains both the cancellation of the bulk

background force and the suppression of the diffusive mo-

mentum kicks whose origin is in the discrete nature of the

electron macroparticle distribution.

SIMULATION SETUP AND WORKFLOW

For simulations presented here, we worked in the parame-

ter regime of [2], which is broadly relevant to high-energy

cooling systems. We assume a locally constant beam-frame

electron number density of ne = 4.2×1015 m−3, correspond-

ing to the expectation value of the distance to the nearest

(to the ion) electron of r1 ≈ 4.9 × 10−6 m. The beam-frame

interaction time in the cooler is taken to be Tint = 4.× 10−10

s, or approximately 0.16 × Tpl . We considered two ion

species: protons and fully-stripped gold ions (Z = 79). For

simulations and the parametrized model presented here, we

consider the case of the ion velocity parallel to the magnetic

field lines, and compute the longitudinal component of the

dynamic friction force.

The overall approach is to first compute the dynamic fric-

tion force on the ion from the cold electron gas, where, in

the reference frame used in our simulations (i. e., centered

on the stationary ion), all electron macroparticles have the

same initial velocity, equal in magnitude to the ion velocity

in the beam frame. Once the friction force is known for the

ion interacting with the cold electrons, the dynamic friction

force acting on the ion from a gas of warm electrons can be

computed by convolution,

F
(w)

∥
(Vi) =

∫ ∞

−∞

F
(c)

∥
(Vi − ve) f (ve)dve, (4)

with superscripts w and c indicating the force computed

for the ion interacting with the warm and cold electron gas,

respectively, and the (arbitrary) distribution density of elec-

trons in the longitudinal velocity space denoted by f (ve). In

what follows, we discuss the calculation of the drag force

from the cold electron gas and the superscript c is omitted.

As mentioned, we track pairs of electron macroparticles,

the two particles in the same pair having identical initial

conditions. One electron in each pair moves in the effective

potential of Eq. (3), while the other stays on the unperturbed

trajectory. The contribution to the net friction force from

each initial condition is then computed from the difference

between the momentum kicks imparted to the ion by the

two electrons in the same pair over the interaction time.
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Figure 1: The unnormalized integrand of the r.h.s. of Eq. (5),

showing the contribution to the total dynamic friction force

from different impact parameters, for a proton with V∥ =

1.5 × 104 m/s interacting with cold electrons.

We used a second-order, symplectic integrator to generate

the results presented in this paper. Taking advantage of

the axial symmetry of the configuration under study, we

chose the initial conditions along the lines of constant impact

parameter D parallel to the z axis (for multiple values of D).

Given the assumption of a constant local density ne and our

interest in the (ensemble-average) expectation value of the

friction force, the initial conditions were spaced uniformly

in z. For a given value of the ion velocity, we first compute

the contributions to the total force from all initial conditions

with the same impact parameter, Fline(D), and then integrate

over the impact parameters to obtain the total friction force:

F∥(Vi) = 2πne

∫ ∞

0

DFline(D)dD . (5)

Figure 1 shows the unnormalized integrand of the r.h.s. of

Eq. (5) for the case of a proton moving at 1.5 × 104 m/s,

illustrating two generally valid findings. The first one is that

the contributions to the total friction force tend to zero as

the impact parameter approaches zero. The second finding

is that the large-impact-parameter tail of the integrand falls

off approximately exponentially (as seen when plotting the

logarithm of the integrand), and so the result for the total

friction force is finite even when the integration over the

impact parameter is carried out to infinity as the upper limit.

(This also allows us to analytically estimate the contributions

to the net friction force from impact parameters beyond the

largest one that we use in simulations.) Thus, in the model

described here, there are no divergences at either small or

large impact parameters and, therefore, no need to introduce

the maximum and minimum cut-off impact parameters and

the Coulomb log in order to arrive at a finite value of the

friction force.

To compute the longitudinal dynamic friction force as a

function of the ion velocity, the procedure outlined in this

section is repeated for different values of the ion velocity.
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Figure 2: Longitudinal dynamic friction force as a function

of the ion velocity, computed from first principles in the

limit of infinitely strong B. Gold ion, zero transverse ion

velocity component, cold (blue) and warm (green) electrons.

SIMULATION RESULTS

Figure 2 presents the results of computation of the lon-

gitudinal dynamic friction force for the gold ion (Z = 79).

The beam-frame interaction time Tint = 4.0 × 10−10s. The

interpolated cold-electrons result is shown in blue (the red

dots are computed values), while the green line shows the

result for a warm electron gas, assuming for this example a

Maxwellian distribution in beam-frame ve, ∥ with the rms lon-

gitudinal velocity ∆e ∥ = 1.0× 105m/s. The warm-electrons

result was computed via the convolution procedure of Eq. (4).

Because convolution with a Gaussian is, in effect, an ap-

plication of a smoothing filter (a “moving average”), the

maximum friction force in a warm electron gas is smaller

than the peak dynamic friction force from interaction with

cold electrons. For both cold and warm electrons, we find

the expected linear dependence of the friction force on the

ion velocity at small V , as well as a 1/V2 dependence at high

velocity. The convergence of the “warm” and “cold” results

at ion velocities much higher than the rms thermal electron

velocity makes sense on qualitative grounds, as well.

Figure 3 shows the computed dynamic friction for protons

in a cold gas of strongly magnetized electrons, for three

values of the interaction time, namely Tint , 0.5 × Tint , and

0.25 × Tint . In addition to a linear dependence on the ion

velocity at small V , we find a linear scaling of the friction

force in the interaction time. However, the dependence on

the interaction time disappears at high ion velocity.

In a study based on a combination of scaling and dimen-

sional analysis and fitting the data, we found the following

scaling and asymptotic behavior of the longitudinal friction

force computed with our reduced binary interaction model.

At low velocity, the friction force is well approximated by

F∥(V∥) ≈ −2Znemerec2TintV∥ (small V∥), (6)
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Figure 3: Longitudinal dynamic friction force as a function

of the ion velocity, computed from first principles for three

different values of the interaction time, in the limit of in-

finitely strong B. Protons, cold electrons, zero transverse ion

velocity component.

with a linear dependence on the ion charge, velocity, and

the interaction time. At high ion velocity, the results of the

simulations are very well approximated by the expression

F∥(V∥) = −2πZ2neme(rec2)2/V2
∥ (large V∥). (7)

that shows a Z2 dependence on the ion charge number, a

1/V2 dependence on the ion velocity, and no dependence

on the interaction time. In addition, the peak friction force

scales with the ion charge as Fmax
∥

∝ Z4/3.

PARAMETRIZED MODEL

From our simulation results, we have constructed a simple

parametrized model for the longitudinal interaction-time-

averaged dynamic friction force on the ion, for the case of

strongly-magnetized, longitudinally-cold electrons and short

interaction time. In this regime the physical system is de-

scribed by three independent parameters: the ion charge

number Z , the local electron number density ne, and the

beam-frame interaction time in the cooler Tint . By con-

struction of our simulation procedure, the friction depends

linearly on ne. Introducing two auxiliary parameters,

A = 2πZ2neme(rec2)2

and

σ ≈ (πZrec2/Tint )
1/3
,

the longitudinal dynamic friction force is given by

F∥(V) = −
AV

(σ2
+ V2)3/2

. (8)

In addition to correctly capturing the qualitative behavior

of F∥(V), this model reproduces the small- and large-ion

velocity asymptotic results of Eqs. (6) and (7). Furthermore,
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Figure 4: A two-parameter model for the longitudinal dy-

namic friction force as a function of the ion velocity, Eq. (8),

compared with results of first-principles computation in the

limit of infinitely strong B. Gold ion, cold electrons, zero

transverse ion velocity component.

the model predicts the scaling of the peak friction force with

the ion charge and the interaction time:

Fmax
∥ ∝ Z4/3T

2/3
int
, (9)

in agreement with empirically found Z4/3 scaling mentioned

in the previous section.

Figure 4 illustrates the agreement between the simulation

results and our parametrized model for the case of Z = 79

(gold ion). The agreement is generally quite good, although

the peak force is underestimated by ∼ 10 − 15%.

COMPARISONS WITH ANALYTIC AND

SEMI-ANALYTIC MODELS

We compared the results of our first-principles simulations

to the predictions of two theoretical models: an analytical ex-

pression for the longitudinal friction force in the strong-field

limit, due to Derbenev and Skrinsky [1, 3], and the predic-

tions of the semi-analytic model for the magnetized friction

force, introduced by Parkhomchuk [4]. In both cases we

took the transverse ion velocity to be zero so as to compare

the results for the longitudinal magnetized friction force.

For the Derbenev and Skrinsky (DS) model, we considered

the large-velocity asymptotic limit (the ion velocity is much

larger than the longitudinal thermal electron velocity), where

their result for the longitudinal friction force simplifies to

F∥(V∥ ; V⊥ = 0) = −
2πZ2neme(rec2)2

V2
∥

, (10)

exhibiting a Z2/V2 scaling of the friction force, with no

dependence on the interaction time and no Coulomb log

term. (This is in agreement with [1] and corrects a factor of

2 misprint found in several publications.) For the Parkhom-

chuk model, we used the definition of the minimum cut-off

0 1 2 3 4 5 6
Vion, (105m/s)

0

1000

2000

3000

4000

5000

6000

F
(e
V/
m

) 

Reduced model ( e = 0,B )
Parkhomchuk ( e = 0,B )
Parkhomchuk ( e = 0,B= 5T )
Parkhomchuk ( e = 0,B= 1T )
Derbenev-Skrinsky (Vi = 0,B )

Figure 5: Comparison of the longitudinal dynamic fric-

tion force computed from first principles (with the reduced,

strong-field model of Eq. (3)) with the predictions of the

Parkhomchuk model and the strong-field, high-velocity limit

of the Derbenev and Skrinsky model. Results shown are for

Au+79 and cold electrons.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Vion, (105m/s)

0.0

2.5

5.0
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Reduced model ( e = 0,B )
Parkhomchuk ( e = 0,B )
Parkhomchuk ( e = 0,B= 5T )
Parkhomchuk ( e = 0,B= 1T )
Derbenev-Skrinsky (Vi = 0,B )

Figure 6: Same as Fig. 5 except the results shown are for

protons and cold electrons.

impact parameter ρmin that enters in the Coulomb log as

in BETACOOL [5–7], i.e., ρmin = Zrec2/(V2
ion
+ V2

e,e f f
),

taking Ve,e f f = ∆e ∥ , the rms electron thermal velocity. In

the Parkhomchuk model, dependence on the magnetic field

is via the Larmor gyration radius that enters in the calcu-

lation of the Coulomb logarithm, with the infinite-B limit

well-defined (non-singular).

For cold electrons, the results of comparison for the gold

ion (Z=79) and protons are shown in Fig. 5 and Fig. 6. We

find an essentially exact agreement with the large-velocity

asymptotic of the DS model where the assumptions regard-

ing system parameters are the same as those used in our sim-

ulations. It should be noted, however, that while Derbenev

and Skrinsky consider a perturbative dielectric response of

a plasma, our approach is based on a binary collision model.
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Figure 7: Comparison of the longitudinal dynamic friction

force computed from first principles (with the model of

Eq. (3)) with the predictions of the Parkhomchuk model with

the definition of ρmin as used in BETACOOL [7]. Results

shown are for Au+79 and warm electrons (∆e ∥ = 1.0 × 105

m/s).
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Figure 8: Same as Fig. 7, except the results shown are for

protons.

Our longitudinal friction force results are consistently

lower, for all ion velocities, than the predictions of the

Parkhomchuk model in the strong-field limit. This is also

the case for warm electrons, as illustrated in Figs. 7 and 8

for a “representative” choice of the rms electron thermal

velocity spread ∆e ∥ = 1.0 × 105 m/s. This may indicate a

possible overestimation of the dynamic friction force in the

Parkhomchuk model in this regime. By extrapolation, one

may expect to find such overestimation for the finite values

of B, as well.

DYNAMIC FRICTION FORCE FOR

ANTIPROTONS

We applied the approach presented here to compute the

longitudinal dynamic friction force acting on an antiproton

(Z = −1) interacting with a cold, strongly magnetized elec-

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Vion, (105m/s)

0

5

10

15

20

F
(e
V/
m

) 

protons
antiprotons

Figure 9: Longitudinal dynamic friction force for protons

and antiprotons computed with a reduced ion-electron binary

interaction model, assuming a cold, strongly magnetized

electron gas.

tron gas, and compare the results to those presented above

for protons, keeping system parameters other than the charge

number the same. As shown in Fig. 9, our first-principles

simulations with the reduced binary collision model yield a

significantly stronger friction force for the case of the repul-

sive ion-electron interaction potential. Qualitatively, this can

be traced to the different topology of electron orbits in the

repulsive-interaction potential (Z < 0) compared to the case

of Z > 0. For Z < 0, no oscillatory orbits are possible, only

unbound orbits and orbits having at most one turn-around

point (depending on the Tint and initial conditions). Most

of the contribution to the ensemble-averaged net force for

Z < 0 comes from strong, small-impact-parameter inter-

actions, yet a finite result for the friction force is obtained

when the statistics of the collisions is handled properly. This

will be discussed in a separate publication.

STATISTICAL CONSIDERATIONS

In the work presented here, our objective is to compute the

expectation value of the dynamic friction force on a single

pass through the cooler. However, estimates of statistical

pass-to-pass variations in the momentum kick received by

the ion in the cooler are of clear practical interest. Our pro-

cedure for computing the friction force makes it possible to

estimate, for a given Tint , Z , and ion velocity, the volume

from which comes (say) 95% of the contribution to the total

force on a single pass through the cooler. Assuming a con-

stant ne, we then know the number of physical electrons, N95

in this volume. For example, for Z = 79, Vion = 4.5 × 104

m/s (near the peak of F(V)), N95 is ∼ 220; while for Z = 1,

Vion = 1.0 × 104 m/s (near the peak of F(V) for protons),

N95 is ∼ 20. (Clearly, not all of these electrons contribute

to the net force equally.) A number as low as 20 indicates a

need to look carefully at the statistical properties of diffusive

kicks experienced by the ion in traversing the cooler. This

will be addressed in greater detail elsewhere.
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