Author: Reiter, A.
Paper Title Page
P1003
Recommissioning of the CRYRING@ESR Electron Cooler  
 
  • C. Krantz, Z. Andelkovic, C. Dimopoulou, W. Geithner, T. Hackler, F. Herfurth, R. Hess, M. Lestinsky, E. Menz, A. Reiter, J. Roßbach, C. Schroeder, A. Täschner, G. Vorobjev
    GSI, Darmstadt, Germany
  • C. Brandau, S. Schippers
    Justus-Liebig-University Giessen, I. Physics Institute, Atomic and Molecular Physics, Giessen, Germany
  • V. Hannen, D. Winzen
    Westfälische Wilhelms-Universität Münster, Institut für Kernphysik, Münster, Germany
  • C. Weinheimer
    Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, Münster, Germany
 
  Funding: Parts of this work have been supported by the German Federal Ministry of Education and Research (BMBF) under contract numbers 05P19PMFA1 and 05P19RGFA1.
The cooler storage ring CRYRING has been recommissioned at GSI as a Swedish in-kind contribution to FAIR. Within the CRYRING@ESR project, it complements the heavy-ion facilities of GSI by a dedicated low-energy machine. Large parts of the CRYRING@ESR experimental programme rely on electron cooling as a means of beam preparation. Additionally, the cooler serves itself as low-energy internal electron target in atomic physics experiments. Upon installation of the cooler at GSI/FAIR, a number of technical upgrades have been made to improve operational performance and flexibility as an experimental platform. These include custom-made precision voltage dividers for monitoring the acceleration potential on the < 10 ppm level, as well as an experiment control system allowing rapid modulation of the electron energy. In recent GSI beamtimes, the electron cooler has been used successfully for cooling of highly-charged and singly-charged heavy-ion beams. Further hardware upgrades and dedicated experiments to characterise machine performance are planned.
 
poster icon Poster P1003 [2.078 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)