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Here CSR stands for “Coherent Synchrotron Radiation”
instead of “Cryogenic Storage Ring”
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|. Introduction

Motivation to study microwave instability (MBI):

CCR requires the transport of high intensity beams while
preserving brightness of phase space quality

Early design of CCR of MEIC

First numerical observation of CSR effect on
microbunching instability (MBI) in CCR of MEIC



CCR for High Energy Electron Cooling

Cooling high energy ion beam requires high energy electrons
accelerated by RF cavity ----needs bunched beam cooling
Efficient electron cooling at high energy demands

— High average current for the cooling beam
— High beam power
— High phase space quality of the cooling beam

ERL allows the beam power recycled by the linac

CCR is proposed to reduce the demand for high average
current from the electron source and in the linac



lllustration of CCR of MEIC

solenoid
ion bunch

————— —— — — - —————— —

Cooling section

Fast kicker — circulator ring Fast kicker

* The electron beam will be reused for cooling the ion beam multiple
times by circulating in the CCR for multiple turns



Requirements for ERL-CCR Cooler

* The success of the ERL-CCR design concept is measured
by:
— The maximum number of circulations in the CCR before the
bunch self-heating during its transport in the ring
— Full energy recovery after the circulations

 The cooler performance is determined by:
— The technology of ultra fast kicker (Amy Sy’s talk on Tuesday)
— The ability to transport high-intensity beam while preserving
high beam phase space quality
* Collective interaction of the high-intensity bunch tends

to cause instability and presents significant challenge in
beam dynamics



Early Design of ERL-CCR for MEIC
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Table 1: Relevant parameters for the CCR.

Parameter Value
Beam energy (MeV) 54
Bunch charge (nC) 2
Repetition rate (MHz) 750
Relative energy spread 10”
RMS bunch length (ps) 3333
Longitudinal emuttance (keV-psec) 180
Transverse normalized emittance (mm-mrad) 3
Cooling solenoid field (kg) 20




Numerical Observation of Microbunching Instability

Bunch Longitudinal Phase Space Distribution

Elegant tracking results

100K particles
Single turn
No quiet start

1000K particles
Single turn
With quiet start

(Tennant and Douglas, 2012)
(Nissen et al., 2014)




Evolution of Longitudinal Phase Space
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Table 2: Evolution of electron bunch parameters as a function of tums 1n the CCR.

Elegant tracking

Results

(100K particles)

1 Turn 2Turns | 3Turns | 4 Turns | S Turns
g, (mm-mrad) 29 3.1 38 4.5 5.1
&, (mm-mrad) 29 29 3.0 3.1 3.2
ot (ps) 2933 2931 29.28 2924 29.19
oApE (%) 0.012 0.027 0.066 0.096 0.117




Observation and Questions

* The beam is severely microbunched after a few
revolution in the CCR.

* The phase space distribution depends sensitively on
— initial condition
— the number of particles used in simulation

* Questions

" Are these results real or numerical artifacts?
* How to understand the underlying physics?
= How to mitigate these microbunching instability



Il. LSC and CSR induced
Microbunching Instability (MBI)

LSC on straight path

CSR interaction in magnetic dipoles
Physics of Microbunching instabilities
Challenges of Numerical Simulation



Self-Interaction Among Particles in a Bunch
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LSC Interaction on Straight Path

* Longitudinal space charge (LSC) wakefield for a Gaussian bunch
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LSC “wake” stronger at smaller scale



CSR Interaction on Curved Orbit

* Coherent synchrotron radiation (CSR ) wakefield for a Gaussian bunch
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CSR “wake” stronger at smaller scale



Radiation Power Spectrum for N electrons
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Features of LSC and CSR Interaction

 CSR impedance is independent of energy. CSR effect can be
important at high energy.

* At high energy, particle longitudinal position in the bunch is
frozen, and LSC induced energy modulation keeps
accumulation along the beam line. MBI from LSC could be
more serious than CSR induced MBI



Microbunching Instability

Current Perturbation Gain=10 | 10%
I 1% —

M

Impedance

Energy Perturbation _
A }\' R56 - dZ/fSP

= growth of slice energy spread (and emittance) .

(Z. Huang, SLAC)



Example: Development of Microbunching
Instability in an FEL Driver

COTR

| Laser heater

injector -L— linac ndulator
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Initial modulation: AYm Final modulation:

= (Cause COTR in diagonstics

= Laser pulse modulation = Degrade FEL performance

= Shot noise

Important factors at play: uBl characterization:
* Oun » Bunching factor: b(k) =< e~ % >
* Initial modulation . Gain: G(k) = Ib[(k |
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* Phase space rearrangement (1b(K)|%)



Early Design of CCR of MEIC
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I1l. Analysis of MBI for Non-magnetized Beams

Vlasov analysis
— Linearized perturbative approach
— Characteristics

Role of Landau damping by emittance and energy
spread

Dependence on beam current, intrinsic spread and
lattice optics

Comparison with tracking results

— Convergence

Impact of lattice design on MBI
Proposed benchmark with experiment



Microbunching Gain Analysis

* Vlasov equation | 5, 4x —
X=(x,x",y,y’,z,0) s T ds x =

Linear Approximation:
Small perturbation over a coasting beam f — fo + fl
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Gain Analysis

< Longitudinal
blk(s);s] = bolk(s);s] + [ dr K(r,s)blk(7); 7], smearing
0 due to beam
intrinsic spread:
> Landau Damping
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3. Convert energy

2. Convert density

modulation at T to lat 1. Density
density modulation modulation at T to Modulation
at S energy modulation at T

* Gainis suppressed by Landau damping at small wavelength, and decrease at
large wavelength by impedance. There is an optimal wavelength when the gain peaks



CSR Driven MBI During Bunch Compression

* Process Density modulation * Assumptions

Zcsr (k)l T Rse = 4D particle dynamics

Energy modulation = (SR field based on 1D bunch

* Approach * Linearized Vlasov equation for 4D phase space
" Iterative solution

b(J(s):5) = bo(k(s):5) + || dK (r.)b(k(7):7)
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M. Borland et al., NIM A483 (2002)268 S. Heifets, G. Stupakov and S. Krinsky, PRST-AB 5 (2002) 064401
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Two-Stage Amplification

* CSR microbunching i
b, (k;s)=b,y(k;s)+ J; ds'K(s',s)b,(k';s")

one - stage ;rmpliﬁcation

1 (1-3)+1 (2-3)

+J:) ds'K(s',s)| ds" K(s",5")by (K"';"")

two - stage a;npliﬁcation

(Huang and Kim)
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Space Charge Driven MBI (linac+drift+chicane)

* Process Density modulation * Assumptions
(in drift k l TR (in chicane * In drift, longitudinal density
+ linac) LSC( ) = ) frozen, space charge oscillation
Energy modulation negligible
* Angular spread do not spoil MBI
 Approach sHiar =P g

= (Calculate gain using bunching factor at initial and final path length
= Mapping from (z,, 6,) to (zf, 6f), linear expansion using |ksRg¢0,,| < 1

(assuming initial
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MBI Measurement at LCLS

Relative energy (MeV)

Relative energy (MeV)

LO,9m Laser DL1 L1 BC1 L2 BC2 L3/Trans. DL2 SXRSS
0-135 Heater -7mm 12 m 45 mm 360 m 15-50 mm 820m -0.15 mm Chicane
MeV 8 mm 135-250 MeV 0255 GeV 543GeV 100m Trans. 0-06 mm Trans.
.¢'1'53;\ 140m 130m  xrcav

&

BC2 R56 = 15mm BC2 R56 = 25mm

s
(]
=
&
2
g Vary R56 at BC2 Measurement done
g here
o

-50 0 50 -50 0 50

Longitudinal position (um) Longitudinal position (um)

BC2 R56 = 35mm BC2 R56 = 50mm

f (D. Ratner et. al, PRSTAB 18, 030704 (2015)

' el m/

Relative energy (MeV)

-50 0 50 -50 0 50
Longitudinal position (um) Longitudinal position (um)



MBI in the MEIC Circulator Cooler Ring

Beam Parameters

Name Value Uni
t
Beam 54 Me
energy \'}
Bunch 60 A
current
Norm. 3 KHm
emittance (in both
planes)
Byo,yo 10.695/1 m
.867

o vo 0.0/0.0
Slice energy 1x10*
spread
Chirp 0.0 m-!

Microbunching Gain along the path length (1 turn)
(With steady-state CSR interaction only)
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(C-Y Tsai et al., see poster in this workshop)



Microbunching Gain in CCR

Lattice functions for CCR
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Contributions from Various Impedances

* Microbunching gain spectrum for one pass through CCR
10

10 .
—s.s. UR-CSR

108k R+LSC —s.s. NUR-CSR
—S.S.+tr.+drif. CSR
—s.S.+tr.+drif. CSR + LSC

only —LSC only
O] 105
s.s CSR and CSR drif
10°
Steady-state CSR only
J
10°

0 500 1000 1500 2000
A (um)

* This only gives the growth rate in the linear regime. The MBI
will saturate quickly in the nonlinear regime.



V. Mitigation Methods

* Local isochronicity of optical lattice
— Small R
— Comparison of MBI for two different lattices

* Use magnetized beam

— Larger transverse emittance for Landau damping
— Possible shielding of CSR by vacuum pipe



» Lattice Impact: two 1.3 GeV high-energy recirculation arcs

Name Example 1 Example2  Unit
(large Rg) (small Rgg)

Beam energy 1.3 1.3 GeV
Bunch current 65.5 65.5 A
Norm. emittance 0.3 0.3 Km
B.o 35.81 65.0 m
Qg 0
Slice energy spread  1.23 x 10~ 1.23 x 107

0.5

Example 1
i’lﬁnw
0 100 200

s (m)

0.005

Momentum compaction along the arc:

Example 2

* Twiss parameters
along the arc:

Example 1

(D. Douglas et al, arXiv)

e

Dispersion (m)



Microbunching Behavior for the Two Example Arcs

» Microbunching gain along the arc
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Magnetized Beam

Transport the beam with angular momentum
through dipole with focusing index :---axial
symmetric focusing in dipole

Large emittance is likely to cause stronger Landau
damping at short wavelength

Push the peak of microbunching gain spectrum to
larger wavelength

MBI could be suppressed by shielding of CSR occurs
at longer wavelength

More complete theoretical and numerical study will
be carried out

(suggested by Ya. Derbenev)



CSR Shielding by Vacuum Pipe

Outer-wall reflection can be well approximated by a geometric
model [Derbenev (1995), Carr (2001), Sagan (2009), Oide (2010)]

Critical length (Catch-up distance):

L.=2R0,. ~2+\/2Rx, Ty K R
0, = ArcCos (R/(R + xp)) &~ \/2xp/ R
Path difference:

As = 2R(Tan(8,) — ) ~ —1 /2%
s = an(f, )™\ h
Shielding threshold:

kun = m\/R /b3

Y. S. Derbenev, et al., TESLA FEL-Report 1995-05 (1995).
G. L. Carr, et al., PAC'01, p. 377 (2001).
D. Sagan, et al., PRST-AB 12, 040703 (2009).
K. Oide, Talk at CSR mini-workshop, Nov. 08, 2010.
Il D.Zhou, et al., Jpn. J. Appl. Phys. 51 (2012) 016401.




Experimental Test

 Demonstrate the capability of transporting high-brightness
beam without degrading phase space quality

» Verify the theoretical and numerical predictions; test the
codes

Proposed Test Facility of CCR using JLAB FEL
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 To produce the same microbunching effects in the test facility as in the
CCR, we need to prepare a bunch with
— Comparable I, /Y
— Comparable intrinsic spread & ,8y ,Gp



V. Conclusion

CCR has a big potential to enable high-energy electron cooling
by using electron source of achievable average current

However, CSR and LSC induced microbunching instability
could heat up the cooling beam during its transport in CCR

Microwave physics is largely understood and Vlasov solver is
developed for non-magnetized beam

Theories and simulations are to be benchmarked with
experiments, and theory could give guidance on the scaling
for test facilities

Further studies are planned for microwave physics of
magnetized beam in CCR, and mitigation schemes will be
explored to successfully transport magnetized beam through
CCR for high energy cooling



