Recent Progress in the Coherent Electron Cooling Experiment

Vladimir N. Litvinenko, <u>Igor Pinayev</u>, Joseph Tuozzolo for CeC team

C-AD, Brookhaven National Laboratory, Upton, NY, USA Stony Brook University, Stony Brook, NY, USA Niowave Inc., Lansing, MI, USA Budker Institute of Nuclear Physics, Novosibirsk, Russia STFC, Daresbury Lab, Daresbury, Warrington, Cheshire, UK

Supported by NP DoE office Accelerator R&D grant and BNL (LDRDs & PD, C-AD R&D)

Content

- Why we need very strong cooling at BNL
- How we plan to cool 250 GeV protons and 100 GeV/u heavy ions
- Coherent electron Cooling
- Coherent electron Cooling Proof-of-Principle Experiment
 - Goals and scheme
 - Progress with the commissioning
 - Current status and plans

eRHIC design Highly advanced and energy efficient accelerator

 $4.1 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1} \text{ for } \text{Js} = 126 \text{ GeV} (15.9 \text{ GeV} \text{ e}^{\uparrow} \text{ on } 250 \text{ GeV} \text{ p}^{\uparrow})$

eRHIC peak luminosity vs. CoM energy

eRHIC design covers whole Center-of-Mass energy range, including "EIC White Paper Upgrade" region

Small beam emittances and IR design allows for full acceptance detector at full luminosity

eRHIC hadron beam is 1,000 x brighter than current RHIC beams

	e	р	² He ³	⁷⁹ Au ¹⁹⁷
Energy, GeV	15.9	250	167	100
CM energy, GeV		126	103	80
Bunch frequency, MHz	9.4	9.4	9.4	9.4
Bunch intensity (nucleons), 10 ¹¹	0.07	3.0	3.0	3.0
Bunch charge, nC	1.1	48	32	19.6
Beam current, mA	10	415	275	165
Hadron rms normalized emittance, 10 ⁻⁶ m		0.2	0.2	0.2
Electron rms normalized				
emittance, 10^{-6} m		23	35	58
β*, cm (both planes)	5	5	5	5
Hadron beam-beam parameter		0.004	0.003	0.008
Electron beam disruption		36	16	6
Space charge parameter		0.08	0.08	0.08
rms bunch length, cm	0.4	5	5	5
Polarization, %	80	70	70	none
Peak luminosity, 10 ³³ cm ⁻² s ⁻¹		4.1	2.8	1.7

Very strong cooling is required

Requirement vs. current cooling techniques

IBS growth time for eRHIC beam is about 20 seconds (for 250 GeV protons) and have to be contra-acted by cooling. Initial operation of eRHIC can started with cooling time of few minutes, BUT NOT HOURS!

RHIC's stochastic cooling can cool 10⁹ ions in 5 nsec bucket with cooling time ~ 1 hour. It is equivalent to cooling time for eRHIC 0.3 nsec bunches:

- Heavy ions > 10 hours
- Protons > 100 hours

Our best design for electron cooling promised to cool ion beam at 100 GeV with cooling time of one hour. Extending this \$150M facility to cool 250 GeV protons will provide cooling time of about 30 hours. It would be better than stochastic cooling, but definitely insufficient for eRHIC

We need a better cooling mechanism.

Coherent electron Cooling

This novel untested technique needs a CeC Proof-of-Principle Experiment

This novel untested technique needs a CeC Proof-of-Principle Experiment

Our PoP is based on an economic version of CeC: it limits strength of the wiggler a_w to about 0.5 **but it is very cost effective**

Location – RHIC 02:00 Region

Main Accelerator Parameters

Electron Beam	
RMS Energy Spread	$\leq 1 \times 10^{-3}$
Normalized Emittance	\leq 5 μ m rad
Peak Current	60-100 A
FEL	
Wiggler Length	3×2.5 m
Wiggler Period	40 mm
Wiggler Strength, a _w	0.5 +0.05/-0.1
FEL Wavelength	13.6 µm

Parameter	Value
Species in RHIC	Au ⁺⁷⁹ ions, 40 GeV/u
Relativistic factor	42.96
Number of particles in bucket	109
Electron energy	21.95 MeV
Charge per e-bunch	0.5-5 nC
Rep-rate	78.17 kHz
Average e-beam current	0.39 mA
Electron beam power	8.6 kW

Matching velocities/relativistic factors We rely on the increase of the shot noise in electron beam which is induced by ion's in the modulator

Anticipated Beam Dynamics

r.m.s. length of the cooled part 80-120 ps. The cooling effects can 2 GHz (or more) bandwidth using spectrum analyzer or digital scope

Simulated beam profile evolution with CeC PoP parameters

Cooling full bunch Self-consistent simulations

Plot shows evolution of Au ion bunch profile after 40 mins of CeC using 1 nC (10 psec long) and 3 nC (30 psec long) electron bunches.

- 112 MHz SRF Gun, Support Systems, and Cathode
- Two 500 MHz NC cavities
- Beamline, diagnostics and lowpower beam dump

Phase I: Low energy beam-line

Coherent electron Cooling PoP

BROOKHAVEN NATIONAL LABORATORY

Conditioning of 112 MHz SRF Gun: Nov-Dec 2014

Record beam parameters from CW SRF 112 MHz gun – June 2015

1.6-1.7 MeV (kinetic energy) e-Beam with 3 nC in CW mode 2 MeV in pulse mode 20 MV/m at photocathode

CeC PoP Final Configuration

Coherent electron Cooling PoP

Full Energy Beam Line Installation - 2015

- Install 704 MHz Systems and supporting cryogenic system
- Install Wiggler Magnets
- Install RHIC beam line components: dipoles, quads, correctors, vacuum
- Install beam diagnostics
- Modify and install RHIC DX-DO chamber for FEL light diagnostics
- Move CeC beam dump line to final location

Key deliveries

704 MHz SRF linac from Niowave

Three helical wiggler from BINP (Novosibirsk)

Coherent electron Cooling PoP

We are on the move with rest of the CeC PoP

CeC experiment is now a part of RHIC Run-16 plan

						1 4			<u>'Y1</u>				
concurrent with RHIC setup with beams					pl	anne	ed - I	DRAF	T				
🕅 ramp up luminosity		FY 2015					1	r –					
Program Element	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
GS-Booster-Tandem/Linac/EBIS Sta	artup												
								L					
HIC Cryo scrub & Cooldown to 45 d	leg K				<mark>_</mark>		22 weeks						
HIC Cryo Cooldown/Warm-up				4 Jan -						•	— 6 Jun		
HIC Cryo Operation													
HIC Cryo off													-
					7 Jan			31 Mar	14 May	5 days			
HIC STAR & PHENIX									/	2 Jur	i 1		
RHIC Research with $\sqrt{s} = 200 \text{ GeV/m}$	a AuAu					10	weeks	5 physi	as what				
RHIC Research with $\sqrt{s} = 200,62,39$,	20 GeV/n d	Au											
eC POP Experiment E=40 GeV/n Au										weeks			
ontingency													
0 7													
						1							
	12	0ct		20 Nov			TBD		TBD TE		30 J	une	
SRL (NASA Radiobiology)			15C	1				263			¢		
SRL (Other)													1
LIP (Isotopes)					////222						l		1
LIP (Isolopes)				8 Jan	1		1					31 Ju	+
hutdown (RHIC)		<u> </u>										51 00	

Plans

- We plan to finish installation of complete CeC PoP system before start of RHIC rung in January 2015
- We plan step-by-step commissioning of the CeC systems, initially in background, and later in a dedicated mode of operation.

□ The ambitious goal is to detect fist cooling during Run 16

- this requires commissioning of the 22 MeV SRF accelerator, transport system, diagnostics, attainment of design electron beam parameters, demonstration of FEL HG amplifier, development of RHIC ramp, and finally full synchronization and alignment of electron and ion beams...

Our goal is to use RHIC run 17 for detailed characterization of CeC

and, if time allows, for testing elements of advanced CeC (microbunching amplifier)

Summary

- Progress continues with the component installation and commissioning of CeC proof-of-principle experiment
- Our super-conducting 112 MHz gun generated photo-emitted CW electron beam with record parameters: <u>1.7 MeV , 3 nC per punch</u>
- Critical deliveries (704 MHz SRF linac and three helical wiggler) had been made
- Installation of the complete CeC system is in progress
- CeC experiment is highest R&D priority of C-AD and is now elevated to the status of RHIC experiment
- We plan to commission CeC during RHIC Run 16 and to evaluate its performance during RHIC Run 17.

People involved with CeC PoP at BNL

V. Litvinenko, I. Pinayev J. Tuozzolo, J. Skaritka, Y. Hao, Y. Jing, G.Wang, D. Kayran, B. Xiao, B. Sheehy, E. Wang, T. Rao, Z. Altinbas, S.A. Belomestnykh, K.A. Brown, J.C. Brutus, A.J. Curcio, L. DeSanto, C. Folz, D.M. Gassner, C. Ho, R.L. Hulsart, M. Ilardo, J.P. Jamilkowski, F.X. Karl, N. Laloudakis, R.F. Lambiase, G.J. Mahler, M. Mapes, W. Meng, R.J. Michnoff, T.A. Miller, M.G. Minty, G. Nayara, P. Orfin, F. Randazzo, , J. Sandberg, K.S. Smith, L. Snydstrup, A.N. Steszyn, R. Than, C. Theisen, R.J. Todd, D. Weiss, M. Wilinski, A. ZaltsmanR. Kellerman, T. Xin, D. Ravikumar, Y. Wu

(and we definitely missed somebody!)

BACK-UP

Schedule

Construction

CeC PoP experiment is a DOE NP competitive R&D project –

we are submitting quarterly progress and budget reports

$\mathbf{D}_{\mathbf{A}}$	1	20 I 1 15
Delivery of 704 MHz linac to BNL	✓	30-Jul-15
Assembling and tuning helical wigglers	2/3 done	1-Oct-15
Installing/plumbing the 704 MHz in RHIC tunnel	X	15-Nov-15
Install helical wigglers in RHIC tunnel	X	01-Dec-15
CW laser is commissioned	X	01-Dec-15
Beam diagnostics is intalled		15-Dec-15
Optical diagnostics is installed		15-Dec-15
Complete CeC beam-line	Χ	15-Dec-15

x - a milestone, X – major milestone

Schedule for RHIC run 16

(dates are tentative and are adjusted to the preliminary RHIC Run 16schedule)

Commissioning	Milestones	End date	
SRF cavities cold	Х	15-Jan-16	Has to be synchronized with RHIC run
Complete cavity conditioning	Χ	20-Feb-16	
Generating first beam	Χ	10-Mar-16	
Measuring beam parameters	Х	1-Apr-16	
Propagate beam to the beam dump	Х	20-April-16	
Test co-propagation with ion beam	Χ	1-May-16	
Demonstrate FEL amplification	Χ	15-May-16	
First cooling attempt	X	02-Jun-16	Dedicated 5 days of running

Schedule - demonstration

(dates are tentative and will be adjusted to RHIC Run 17)

			Improving and updating diagnostics, optical
Making necessary up-grades/			system, as well as installing buncher for
improvements	01-Jul-16	31-Dec-16	ACeC test
SRF cavities cold	Х	15-Feb-17	Has to be synchronized with RHIC run
Complete cavity conditioning	Χ	01-Mar-17	
Recreating operational conditions	Χ	21-Mar-17	
Start CeC PoP experiments (using			
APEX shifts)	Χ	07-Apr-17	
Demonstrate microbunching			
amplification (ACeC)	Х	30-May-17	if time allows
Demonstrate CeC PoP cooling	Χ	30-Jun-17	
			Dates have to be adjusted to the end of the
CeC cooling experiments end	Χ	30-Jun-17	RHIC run

FEL amplifier simulation II:

With shot noise from electrons:

$$\left|\delta \hat{n} / n_0\right|_{\max} < 1 \Rightarrow \quad \left|g\right|_{\max} < \frac{\lambda_o}{2} \sqrt{\frac{I_e}{ecL_c}} \Rightarrow \quad g_{\max} \sim 72 \cdot \sqrt{\frac{I_e[A] \cdot \lambda_o[\mu m]}{M_c}} = 429$$

$$M_{c} \equiv \frac{L_{c}}{\lambda_{1}} = \frac{1}{\lambda_{1}g_{\max}^{2}} \int_{-\infty}^{\infty} \left|g(z)\right|^{2} dz$$

γ=21.8

Peak current: 100 A Norm emittance 5 mm mrad RMS energy spread 1e-3 $\lambda w=4$ cm $a_w = 0.4$ $\lambda o=12.7$ um Mc = 35.8

3D Genesis simulation shows that the maximal gain in bunching factor is 409, which agrees with our estimation.

Cathode Deposition and Transfer

We are modifying the cathode deposition system to avoid coverage of the cathode sides with photo-emissive material and for "Serial" production of the cathodes for operation We also up-dating the cathode transfer system in the 112 MHz SRF gun into a robust and reliable UHV system

Expected Electron Beam Parameters

Field Reduction due to Finite Transverse Modulation Size

$$\rho(\vec{r}) = \rho_o(r) \cdot \cos(kz);$$

$$\Delta \varphi = -4\pi \rho \Rightarrow \varphi(\vec{r}) = \varphi_o(r) \cdot \cos(kz);$$

$$\frac{1}{r} \frac{d}{dr} \left(r \frac{d\varphi_o}{dr} \right) - k^2 \varphi_o = 4\pi \rho_o(r)$$

$$\rho(r) = \rho(0) \cdot g(r / \sigma)$$

$$E_{zo}(r = 0) \propto -\frac{4\pi \tilde{q}}{\sigma^2} G(k_{cm} \sigma)$$

$$\varphi(\vec{r}) = -4\pi \cos(kz) \left\{ I_0(kr) \int_r^{\infty} \xi K_0(k\xi) \cdot \rho_o(\xi) d\xi + K_0(kr) \int_0^r \xi I_0(k\xi) \cdot \rho_o(\xi) d\xi \right\}$$
$$E_z = -\frac{\partial \varphi}{\partial z} = -4\pi k \sin(kz) \left\{ I_0(kr) \int_r^{\infty} \xi K_0(k\xi) \cdot \rho_o(\xi) d\xi + K_0(kr) \int_0^r \xi I_0(k\xi) \cdot \rho_o(\xi) d\xi \right\}$$
$$E_r = -\frac{\partial \varphi}{\partial r} = 4\pi k \cos(kz) \left\{ I_1(kr) \int_r^{\infty} \xi K_0(k\xi) \cdot \rho_o(\xi) d\xi - K_1(kr) \int_0^r \xi I_0(k\xi) \cdot \rho_o(\xi) d\xi \right\}$$

$$k_{cm}\sigma_{\perp} = \frac{k_o}{\gamma_o}\sqrt{\frac{\beta_{\perp}\varepsilon_{n\perp}}{\gamma_o}} = \sqrt{\gamma_o}\sqrt{\beta_{\perp}\varepsilon_{n\perp}}\frac{k_w}{2(1+a_w^2)}$$

© V. N. Litvinenko

Phase 3 - 704 MHz Cryogenics

THE COLOR OF STREET

- Integration with LEReC supply and return requirements complete
- All components ordered: VJP (green monster), heater return (blue), cooldown return (lime green to QHS heater), heater skid.
- Warm return vacuum header installation
- 704 MHz scaffold order

CeC PoP RHIC Ramp Development

APEX on RUN 11: 2pm-4pm, June 20th, 2011 Fill: 16093 Bunch length and profiles at 40 GeV

Ramp : Magnets currents

Emittance growth at 40 GeV

Ion Beam Parameters Characterization

Noise floor is 80 dB below the signal at revolution frequency.