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•  A factor of up to 100 luminosity increase due to lower transverse emittances 
expected in PIC and REMEX would make a Muon Collider s-channel Higgs Factory  
a very compelling new project 

•  Lower required muon beam current 
–  Lower power proton driver 
–  Reduced site boundary radiation 
–  Reduced detector background 
–  Reduced proton target requirements 
–  Reduced heating of the cooling absorbers 
–  Lower beam loading and wake field effects in RF cavities 

•  Beyond reducing the required muon beam currents 
–  Smaller higher-frequency RF cavities with higher gradient 
–  Smaller magnet and vacuum system apertures 
–  Stronger focusing at the IP 

Motivation 
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•  Half-integer parametric resonance induced in muon cooling channel 
•  Muon beam naturally focused with period of free betatron oscillations 
•  Absorber plates placed at focal points and followed by energy-restoring RF cavities  

–  Parametric resonance causes strong beam size reduction 
–  Ionization cooling maintains constant angular spread 
–  Emittance exchange at absorbers (wedges + D   or   tilted flat plates + D' ) produces 

longitudinal cooling 
•  Equilibrium transverse emittances an order of magnitude smaller than in conventional 

ionization cooling 

PIC Concept 
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•  Equilibrium angular spread  
and beam size at absorber 

 
 

•  Equilibrium emittance 
  
 
improvement by a factor of 

x′ x′

xx

xx const′ =

2
2

3 ( 1) 1,
2 2 3

e
a a a

mZ w
mµ

θ σ θ
γβ
+= =

3 ( 1)
4

e
n

mZ w
mµ

ε
β

= +

3 2 3
acc

abs

w γπ π
λ γ

′
=

′

PIC Schematic 

Parameter Unit Initial Final 
Muon beam momentum, p MeV/c 250 250 
Number of particles per bunch, Nb 1010 1 1 
Be (Z = 4) absorber thickness, w mm 20 2 
Normalized transverse emittance (rms), !x = 
!y 

!m 230 23 

Beam size at absorbers (rms), !a = !x = !y mm 0.7 0.1 
Angular spread at absorbers (rms), !a = !x = 
!y 

mrad 130 130 

Momentum spread (rms), !p/p % 2 2 
Bunch length (rms), !z mm 10 10 

Correlated optics: !x = 2!y = 4!D 
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PIC Simulation 
•  Linearized orbital motion  
•  Full stochastics 
•  6D emittance reduced by 2 orders of magnitude after ~100 periods 
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•  Two equal-strength opposite-helicity helical dipole harmonics + straight quad 
•  No fringe fields 
•  Orbit in the horizontal plane  

Horizontal and vertical motion uncoupled  
Transverse motion stable in both planes  
!D = !  !  !x = 2!y = 4!  !  !x = 0.25, !y = 0.5 

•  One may even think about both muon signs in the same cooling channel 

PIC Channel: Twin Helix 
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G4beamline Simulation Setup 
•  Parasitic parametric resonance due to energy kicks correlated with betatron motion 
•  With an asymmetric setup, compensation complicated 

•  With symmetric setup, parasitic resonance exactly out of phase with induced one 
–  0.2 m helix period 
–  2 cm Be wedges with 0.3 thickness gradient at Dx max ! 4 cm  
–  Short RF cavities placed symmetrically between the absorbers 
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Phase Space Dynamics 
•  G4beamline used to track 250 MeV/c muons  
•  Stochastics: off 
•  Parametric resonances induced in both planes by two pairs of 1 T/m helical quadrupoles 
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Emittance Evolution 
•  G4beamline used to track one thousand 250 MeV/c muons  
•  1000 helix periods (500 absorbers/RF cavities) 
•  Stochastics: off 
•  Parametric resonances induced in both planes by two pairs of 1 T/m helical quadrupoles 
•                                                     ,                                                      ,   
•  Particle transmission 100% 
•  Cannot turn full stochastics on yet due to beam aberrations 

2 2 2 /x x xx p x p pε ≡ 〈Δ 〉〈Δ 〉 − 〈Δ Δ 〉 2 2 2 /y y yy p x p pε ≡ 〈Δ 〉〈Δ 〉 − 〈Δ Δ 〉 2 2 2 /z z zc t p t p pε ≡ 〈Δ 〉〈Δ 〉 − 〈Δ Δ 〉
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Aberrations 
•  Basic system: helical dipole pair [of period !] + straight quad 
•  Tracks in G4beamline for !260 mrad angular spread 

Horizontal 

Vertical 

Absorber location Absorber location 
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Aberration Compensation 
•  Aberrations 

–  chromatic (momentum dependent, compensated using sextupoles at D ≠ 0)  
–  spherical (geometric, compensated using octupoles) 

•  Grid of particles launched in G4beamline from a point source with !260 mrad angular 
spread, beam smear at the next focal point minimized 

–  Require 1:2 betatron tune ratio 
–  Minimize the number of different helical wavelengths 

•  Compensated system: basic system + harmonics: 
–  Helical: dipole [2!/3], quadrupole [2!/3], sextupole [2!/3] , octupole [2!/3] 
–  Straight: dipole, sextupole, octupole 

Vertical Horizontal 

Absorber location Absorber location 

Two helix periods 
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Nonlinear Resonances 
•  Many multipole harmonics cause nonlinear resonances in case of correlated optics 
•  Multiple octupole harmonics needed to compensate spherical aberrations 
•  Consider, for example, Hamiltonian term of continuous harmonically-varying octupole field 

 
 
 
where 

•  With                                   , any octupole harmonic can cause a resonance 
•  Dispersion further complicates the resonance situation 
•  Hard to correct aberrations with a limited choice of compensating harmonics 
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Muons, Inc. 

•  Design correlated optics but for radial motion only 
•  Realized by adding skew quads for strong x-y coupling 
•  Azimuthal motion not correlated (freedom in tune choice)   
•  2d dispersion focused periodically 
•  Weak parametric resonance quads provide and control beam radial focusing at zero 

dispersion points 
•  Beam envelope not axially-symmetric allowing for use of multipoles for compensation 

of radial aberrations 
•  Advantages: 

–  Betatron tunes shifted away from nonlinear resonances 
–  Control of dispersion size for chromatic compensation 
–  Reduces dimensionality of aberration compensation problem (to just the radial 

dimension) and number of required compensating multipoles 
–  Equates parametric resonance rates in two planes (only one resonance harmonic 

needed) 
–  Equates cooling decrements in the two transverse dimensions 

Skew PIC Solution 
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•  Hill’s equations for coupled motion 

•  Transverse phase space transformation between absorbers 

•  No symplecticity violation 
•  Three independent constraints 
•  Linear motion stability criterion:  

Skew PIC Theory 
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•  Step like curvature and coupling functions 

•  Analytic solution 

•  Eigenvalues: 

Particular Solution 

2 2 2 2

0 cos(4 ) sin(4 )
,

0 sin(4 ) cos(4 )

tan
2

2 ( 2 ) 4

M
M N

N

n KK n g
g

θ θ
θ θ

θ

−⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

− +
=

− −

M

exp( 4 )i θ±



Muons, Inc. 

-- 17 -- V.S. Morozov et al., COOL’15, Jefferson Lab, September 29, 2015 
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•  Approximately step-like curvature and coupling functions in MAD-X 

•  x-y, px-py phase-space trajectories 

MAD-X Implementation 

Transfer	matrix	
M = 
    0.9444   -0.3287   -0.0000    0.0000 
    0.3287    0.9444   -0.0000    0.0000 
    0.0000         0    0.9444   -0.3287 
    0.0060   -0.0000    0.3287    0.9444 

detM = 1.0000 
 
detN = 1.0000 

!1 = 0.0533 
 
!2 = 0.0533 

Dx	 Dy	
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•  Single harmonically-varying quadrupole 

•  Hyperbolic behavior in x-px phase space and simultaneous x and y focusing 

Parametric Resonance 

M = 
 
   -0.0878   -0.9472   -0.0004   -0.0401 
    0.9503   -0.1479   -0.0305   -0.0030 
    0.0074   -0.0995   -0.1625   -1.0449 
   -0.1153    0.0014    1.0410   -0.0965 

detM = 0.9131 
 
detN = 1.1034 

!1 = 0.2697 - 0.0075i 
 
!2 = 0.2697 + 0.0075i 
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•  Sextupole effect (e.g. due to fringe fields or chromatic compensation) in uncoupled 
and coupled correlated optics 

Sextupole Resonance 
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Future Plans 
•  Complete linear Skew PIC design and dynamical studies 
•  Complete nonlinear analysis 
•  Compensate aberrations using necessary multipoles 
•  Compensate dangerous nonlinear resonances if needed 
•  Implement parametric resonance 
•  Demonstrate expected dynamical features in Skew PIC channel 
•  Implement RF and absorbers 
•  Study ionization cooling in simulations 
•  Find a feasible technical concept for magnetic lattice of Skew PIC that 

incorporates RF and absorbers 
•  Develop beam and optics control 
•  Extend Skew PIC to REMEX 


