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Outline

• Modes of operation HESR

• Basic machine and beam parameters of HESR

• Momentum cooling models

• Comparison of momentum cooling techniques for HESR

� Filter momentum cooling

� Filterless (TOF) cooling
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The High Energy Storage Ring HESR

- in the Modularized Start Version of FAIR (MSV) -

• Antiproton Beam Mode

� Accumulation and Acceleration

� Internal Target Experiments with High Momentum Resolution

� Stochastic Momentum Cooling Assisted by BB

• Heavy Ion Mode

� Acceleration and Internal Target Experiments
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Basic Machine and Beam Parameters of HESR

• Ring circumference 575 m, two long straight section 132 m each

• Magnetic rigidity 5 Tm ≤ Bρ ≤ 50 Tm

• Dipole field 0.17 T ≤ B ≤ 1.7 T

• Max. dipole ramp rate 25 mT/s

• Transition gamma 6 – 25

• Transverse acceptance 16 mm mrad @ γtr = 6.23

• Momentum acceptance ± 3 ⋅ 10-3

� Antiprotons: kinetic energy 830 MeV to 14081 MeV
injection 3 GeV

� Ions (bare uranium): 165 MeV/u to 4940 MeV/u
injection 740 MeV/u
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Momentum Cooling Models

• Fokker-Planck Equation for Momentum Cooling

� includes beam-target interaction

� Intrabeam scattering IBS

• Particle Tracking Momentum Cooling (bunched beam cooling)

� includes synchrotron motion due to em-fields of cavities

� Includes beam-target interaction

� IBS

• SystemTransfer Function includes models of system components

� Filter Cooling

� Filterless Cooling ≡ Time-Of-Flight (TOF) Cooling

� (Palmer method)

• Beam feedback included, Open loop gain simulation
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Cooling Methods

• Filter cooling:

• TOF cooling:

ηPK ≈ 0

ηPK ≠ 0
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• Filter Cooling:

Notch Filter discriminates 
between particles with different 
momenta.
Optimum: 
no mixing from PU to Ki

• TOF Cooling:

Uses mixing from PU to Ki to 
discriminate between particles 
with different momenta.

open connection
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Drift and Diffusion Terms

TOF

Filter

Bandwidth (2 - 4) GHz
Gain GA = 100 dB
Equal additional delay

TOF cooling: large cooling acceptance

cooling
shown at the beginning of cooling process
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Filter:
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Beam distribution
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Comparison TOF and Filter Cooling

� mixing from PU to Ki 
necessary

� large cooling acceptance

� large bandwidth possible

� large Schottky noise heating 
terms require small gain

� beam equilibrium larger

� Sensitive to loop instabilities

� mixing from PU to Ki 
unwanted 

� restriction in:
bandwidth
cooling acceptance

� filter suppresses Schottky 
particle and thermal noise

� small beam equilibrium

TOF*) Filter**)

**) D. Möhl et al., “Physics and Technique of Stochastic Cooling”, Phys. Rep. 85(2), 1980

*) W. Kells, “Filterless Fast Momentum Cooling”, 11th Int. Conf. On High-Energy Accelerators, Geneva, July 7-11, 1980
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Beam Feedback

• Open loop gain S(ω) = BTF B(ω) x System T(ω)

S is a dimensionless quantity

• System transfer function: T(ω)

� Includes models of PU and KI response, amplifiers, filters, phase 
shifter

• Closed loop gain                                          

• Feedback loop stability: critical point S = (1, j0)
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Beam Transfer Function (BTF) Simulation

• The BTF describes the 
current modulation ∆I
observed at the PU 
due to the energy 
change ∆E induced by 
the KI

• Nyquist plot: Radius of 
the loop

� ∝ 1/(∆p/p)

� ∝ 1/η

� ∝ N

� ∝ 1/n

Nyquist Plot:

Example for HESR 3.8 GeV/c:

N = 1010 antiprotons
η = 0.03 (γ < γtr)
δrms = 2 ⋅ 10-4

Harmonic number n = 5927

Bold arrows: 
direction of increasing frequency:
a → b → c

a

b

c

a c

bReal
Imag
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Notch Filter Response

• Notch depth:
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Red: infinite notch depth
Blue: -30 dB
Green: -10 dB
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Open Loop Gain Filter Cooling

• Optimal gain and phase 1800 for filter cooling: 
S = -1 (not over the whole bandwidth possible)

• Loop unstable if |S(ω)| = 1 and arg(S(ω) = 00

• Gain 122 dB notch depth -40 dB

Arrows: 
direction of increasing frequency:
a → b → c

Example HESR

• Delay adjusted to the reference particle travelling time from PU to KI

• Any phase error will be visible as a rotation and deformation of the Nyquist diagram

a b c

n = 5927

ab c

Real
Imag

critical point (1,0j)
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Signal Suppression Filter Cooling

• For optimal gain and phase 1800: S = -1

• Not possible over the whole bandwidth  for constant electronic gain

• Measurement signal suppression: see RHIC*)

Example HESR

*) M. Blaskiewicz and J. M. Brennan, Phys. Rev. ST Accel. Beam 10, 061001 (2007).

n = 5927

Measurement*):
M. Blaskiewicz and J. M. Brennan

Beam distribution:
Cooling loop open and closed

Mag
Real

Imag

beam
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Drift and Diffusion Term Filter Cooling 
Including Beam Feedback

• Cooling force slightly reduced in the tails of the beam

• But: Thermal and Schottky particle noise suppressed

Blue curves: without beam feedback

Drift: Diffusion:

beam
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Open Loop Measurement Filter Cooling at COSY

• Filter cooling at 2.425 GeV/c

• (1.8 – 3) GHz

• System unstable if open loop
gain encircles point (1,j0)

0.2-0.2

Nyquist Plot (blue curve):

N = 109

time

≈ 300 s

Magnitude

Nyquist diagram
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Completely different:
Open Loop Gain TOF Cooling

• Phase for cooling in the center of the distribution zero degree

• During cooling loop may become unstable 
(blue point moves to critical point!)

critical point (1,0j)

Gain 98 dB

Real
Imag

n = 5927
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TOF Cooling (3)

• Initial rel. momentum spread 
increased to 5 ⋅ 10-4

• Gain unchanged 98 dB

• Larger stability margin

• Almost no effect on drift term

• TOF cooling works best with 

large initial momentum spread

Blue: without feedback

Gain 98 dB

Mag
Real

Imag

Black: 
beam distribution

Drift Diffusion



September 2015 H. Stockhorst Slide 18

TOF Proton Cooling at 2.6 GeV/c

• The beam is initially heated to increase the rel. momentum spread to 1 ⋅ 10-3

• The loop is stable, Re(S) < 1

0.2-0.2

N = 109
200 s

Nyquist diagram before shaping and cooling
Open loop phase adjusted
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TOF Proton Cooling at 2.6 GeV/c (γ > γtr)

• Initial momentum spread heated to ∆p/p ≈ 1 ⋅ 10-3 (rms)

• Center frequency moves towards an equilibrium value 
during cooling that depends on the delay setting
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Beam Distributions during TOF-Cooling
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harmonic number 1000

Delay: + 7.5 mmDelay: adjusted
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Simulation Results for TOF Cooling at COSY

• Beam equilibrium independent from initial value

• Model predicts the same equilibrium value as measured

Delay: - 10 mm

Black: initial
Red: 150 s
Green: 300 s
Brown: 500 s
Blue: final

Delay: adjusted
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Summary of TOF Cooling (1)

• TOF cooling is available if Filter cooling is already installed

• No additional costs

• TOF cooling works best when momentum spread is large

� Momentum cooling acceptance is larger than for Filter cooling

• Pre-cooling with TOF and then switching to Filter cooling is easily 

established without particle losses.

• TOF cooling technique is essential in the HESR when the initial 

momentum spread is large.
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Summary of TOF Cooling (2)

• The filterless momentum cooling technique (TOF cooling) 
has been invented by W. Kells (Fermilab) 1980 in time 
domain*).

• The TOF cooling technique has been experimentally 
verified for the first time at COSY**).

• A mathematical description of TOF cooling is formulated in 
frequency domain and the results are compared with the 
filter method***).

*) W. Kells, “Filterless Fast Momentum Cooling”, 11th Int. Conf. On High-Energy Accelerators, Geneva, July 7-11, 1980

W. Kells, “A New Approach to Stochastic Momentum Cooling”, Fermilab TM-942, January 1980

**) F. Caspers and D. Möhl, “History of stochastic beam cooling and its application in many different projects”, Eur.Phys.J. H36 (2012) 601-632

***) H. Stockhorst, T. Katayama and R. Maier, “Beam Cooling at COSY and HESR  - Theory and Simulation”,  to be published 
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Heavy Ion Mode

• Injection of a 238U92+ beam from CR into HESR

� Beam preparation at 740 MeV/u

� Mean energy loss compensation with 
Barrier Bucket (BB) cavity

� TOF Stochastic cooling with internal hydrogen target

• Injection of a 238U92+ beam from CR into HESR

� Capture and acceleration to 4.5 GeV/u

� Beam preparation at 4.5 GeV/u

� Filter Stochastic cooling with internal hydrogen target
and BB operation

Target thickness: NT = 4 ⋅ 1015 cm-2
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Thank you for your attention
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Time-Of-Flight (TOF) Momentum Cooling (ηPK ≠ 0)

0 TF

t = TF + ∆TPK

time t

I´(t)

I´(t - TF)

UK(∆TPK) ∝ I´(TF + ∆TPK - TF) = I´(∆TPK)

I(t)

PU KI

Coherent kick voltage: ( ) ( )K PK PKU T I T∆ ∆′∝

UK(∆TPK)

∆TPK

Coherent kicker voltage:

• cooling for ηPK < 0 (γ > γtr) 

• for ηPK > 0 (γ < γtr):
reverse amplifier gain

900 phase shifter

• For γ < γtr additional phase shift 1800 necessary: total system 2700 or -900

Delay adjusted for reference particle

Simplified illustration:
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Beam Transfer Function (BTF)

• Well separated revolution bands at harmonic n:

F

2 0
i T0 0

0

( )
Ze i

B( ) N e ( ) sign( n ) P d
2 2 E n n /n

Ωκ
Ψ ω

ω ω Ω ωΩ Ψ ω
π ω π Ω ω

∂ 
 ∂  ∂= − −  

∂ −   
 

∫

I( ) current modulation at the PU
B( )

Ze/A U( ) energy change at the KI

∆ Ω
Ω

Ω
= =

⋅

2
/κ η β=

2 2

tr1/ 1/η γ γ= −

E: Total beam energy per nucleon, N: particle number
Ze: ion charge TF: particle transit time PU to KI
ω0: nominal angular revolution frequency

Particle frequency distribution: 0
( )d 1Ψ ω ω =∫

• Sign of the BTF different for γ < γtr or γ > γtr

Real part: asymmetric
Imaginary part: symmetric
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TOF Cooling (2)

• Loop close to instability

• Drift terms strongly enhanced with feedback

Signal Enhancement: Drift:

Blue: without feedback

Mag
Real

Imag

Black: 
beam distribution


