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Transverse Action J

Jis a kind of single particle emittance
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Fokker Planck Equation

a continuity equation in action space
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drift (coherent cooling effect) Fm =
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Assumptions and Simplifications

Zero dispersion at pick-ups and kickers
Linear response for pick-ups and kickers
No Schottky overlap

No Chromaticity

accelerating voltage: U, (Q) = Sk (x,y, Q)Vk (Q)

sz S (x,3.Q)j,(x,»,9Q)

pick-up response: V' (Q):

p

transverse sensitivity: S(xaya Q)= XS'(O,O, Q)



2D Phase space

. transverse actionJ

allowed area

forbidden area (no negative emittances

In the following we shall study the 1D distribution function ¥/(J)
of transverse actions at a given 8p/p



Pick-up Signal for Transverse Cooling
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Voltage Power Densities (1)

The voltage spectral power density C(Q) is by
definition the Fourier transform of the

voltage autocorrelation R(¢)=(V(zl(t+7)) .
In a coasting beam it does not depend on T,
i.e. V(t) is a stationary process.

The dimension of C(Q) is V?s.



Voltage Power Densities (2)

Voltage power density due to Schottky noise:
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Voltage Power Densities (3)

Voltage power density due to thermal noise:

|
Cn (Q) = 5 szBTejjf



Transverse Kicks

The transverse kicks are described by the
Panofsky-Wenzel theorem: |

The kick strength is

e proportional to the transverse gradlent of the Iongltudmal
electric field

* inversely proportional to frequency
e max at the zero transition of the electric field




Gain Factors

n, pick-up n, kicker
electrodes noise electrodes

Gain G

________ . | >

gaing, gain g,



Fokker Planck flux

o=-Fwilpdy
2 J
F=-CJ

D=(S(J)+H)J

The terms C (cooling), S (Schottky noise), and H (thermal noise)
do not depend on J.

Therefore the flux is proportional to J.
No flux towards J<O!



Transverse System Gain
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Schottky Noise Coefficient

Schottky power density
depends on
longitudinal distribution
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Schottky power density
decreases with harmonics




Thermal Heating Coefficient
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Equilibrium Distribution

oY
condition: — =0
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The equilibrium distribution turns out to be an exponential:
2C -8
J
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W(J)=w, exp(—
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with average emittance



Time Dependent Solution
W(J,1)=alt)exp(-alt)J])

It turns out that this ansatz is a time-dependent solution to the
transverse Fokker-Planck equation if
a

—+(—C+S+QH)=O

o 2

If C, S, and H are constant in time, then

<J><t>=(<f>o—<J>w)exp(—i)+<f>w

T

with T=C—-— not the instantaneous cooling rate!
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Instantaneous Cooling Rate
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Naive Approximation

* constant system gain:
replace wz by 4W

* rectangular longitudinal ditribution:

replace (dp/p) by

Ap/p

T

full momentum width




Almost Textbook Cooling Rate
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What's ,new”?

Equilibrium distribution is exponential.

Exponential initial distribution remains
exponential during the cooling process.

In that case, a cooling rate equation for each
frequency in the cooling band can be derived.

If this can be made frequency-independent
somehow, one gets to the standard van der
Meer/Mohl description.

Why not modify it (particle number N)?



