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Classical	Cooling	Rate	
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Transverse	Ac1on	J	

J	is	a	kind	of	single	par1cle	emiOance	
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Fokker	Planck	Equa1on	
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driU	(coherent	cooling	effect)	

diffusion	(incoherent	cooling	effect)	

a	con1nuity	equa1on	in	ac1on	space	

flux	in	ac1on	space	



Assump1ons	and	Simplifica1ons	

•  Zero	dispersion	at	pick-ups	and	kickers	
•  Linear	response	for	pick-ups	and	kickers	
•  No	SchoOky	overlap	
•  No	Chroma1city	
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pick-up	response:	

accelera1ng	voltage:		

transverse	sensi1vity:	



2D	Phase	space	
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forbidden	area	(no	nega1ve	emiOances	
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transverse	ac1on	J	

In	the	following	we	shall	study	the	1D	distribu1on	func1on	Ψ(J)	
of	transverse	ac1ons	at	a	given	δp/p	
	



Pick-up	Signal	for	Transverse	Cooling	

at	the	frequencies	
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Voltage	Power	Densi1es	(1)	

The	voltage	spectral	power	density	C(Ω)	is	by	
defini1on	the	Fourier	transform	of	the		
voltage	autocorrela1on																																		.	
In	a	coas1ng	beam	it	does	not	depend	on	τ,	
i.e.	V(t)	is	a	sta.onary	process.	
The	dimension	of	C(Ω)	is	V2s.	
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Voltage	Power	Densi1es	(2)	
Voltage	power	density	due	to	SchoOky	noise:	
	
	
	
	
average	emiOance	
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Voltage	Power	Densi1es	(3)	

Voltage	power	density	due	to	thermal	noise:	
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Transverse	Kicks	
The	transverse	kicks	are	described	by	the	
Panofsky-Wenzel		theorem:	
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The	kick	strength	is	
•  propor1onal	to	the	transverse	gradient	of	the	longitudinal	
					electric	field	
•  inversely	propor1onal	to	frequency	
•  max	at	the	zero	transi1on	of	the	electric	field	



Gain	Factors	
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Fokker	Planck	flux	
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The	terms	C	(cooling),	S	(SchoOky	noise),	and	H	(thermal	noise)	
do	not	depend	on	J.	
Therefore	the	flux	is	propor1onal	to	J.	
No	flux	towards	J<0!	



Transverse	System	Gain	
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Cooling		Coefficient	
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SchoOky	Noise	Coefficient	
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SchoOky	power	density	
depends	on	
longitudinal	distribu1on	

SchoOky	power	density	
decreases	with	harmonics	



Thermal	Hea1ng	Coefficient	
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Equilibrium	Distribu1on	
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The	equilibrium	distribu1on	turns	out	to	be	an	exponen1al:	

condi1on:	
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Time	Dependent	Solu1on	
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It	turns	out	that	this	ansatz	is	a	1me-dependent	solu1on	to	the	
transverse	Fokker-Planck	equa1on	if		
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If	C,	S,	and	H	are	constant	in	1me,	then		
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Instantaneous	Cooling	Rate	
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Naive	Approxima1on	

•  constant	system	gain:		
				replace											by	4W	
	
•  rectangular	longitudinal	ditribu1on:	
				replace																							by	
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Almost	Textbook	Cooling	Rate	
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What‘s	„new“?	

•  Equilibrium	distribu1on	is	exponen1al.	
•  Exponen1al	ini1al	distribu1on	remains	
exponen1al	during	the	cooling	process.	

•  In	that	case,	a	cooling	rate	equa1on	for	each	
frequency	in	the	cooling	band	can	be	derived.	

•  If	this	can	be	made	frequency-independent	
somehow,	one	gets	to	the	standard	van	der	
Meer/Möhl	descrip1on.	

•  Why	not	modify	it	(par1cle	number	N)?	


