

Helmholtz-Institut Mainz

THE GREEN ENERGY TURBINE AS TURBO GENERATOR FOR POWERING THE HV-SOLENOIDS AT A RELATIVISTIC ELECTRON COOLER

A. Hofmann¹, K. Aulenbacher¹, M.-W. Bruker¹, J. Dietrich¹, V.V. Parkhomchuk², V.B. Reva², T. Weilbach¹ ¹Helmholtz-Institut Mainz, Germany, ²BINP SB RAS, Russia

Introduction

One of the challenges in the development of a relativistic electron cooler is the powering of components, e.g. the HV-solenoids, which sit on different high potentials within a high voltage vessel and therefore need a floating power supply. In this poster we present the turbo generator "Green Energy Turbine" (GET), an assembly of a turbine and a generator, as a possible candidate the for powering e.g. the HV-solenoids.

Experimental Demands for Antiproton Research		Challenge: Powering Components at High Potential	
Momentum Range	High LuminosityHigh Resolution $1.5 - 15 \frac{\text{GeV}}{\text{c}}$ $1.5 - 9 \frac{\text{GeV}}{\text{c}}$	Many components within a high voltage vessel, e.g. HV-solenoids, sit on high potential ⇒ Floating power supply is needed	
Doole I unipositive	9 1032 1 $9 1031 1$	RINP SR RAS has proposed to build the power supply in a modular way	

Peak Luminositiy

Momentum Resolution

 $2 \cdot 10^{32} \,\overline{\mathrm{cm}^{2}\mathrm{s}}$ $2 \cdot 10^{\circ 1} \frac{1}{\mathrm{cm}^2 \mathrm{s}}$ $\frac{\Delta p}{n} = 10^{-4}$ $\frac{\Delta p}{\Delta p} = 10^{-5}$

To meet this requirements for the high resolution mode, magnetised electron cooling is needed

- > BINP SB RAS has proposed to build the power supply in a modular way \Rightarrow Floating power supply per module which delivers a power of 5 kW is required
- ► Floating power supply per module should be a turbo generator \Rightarrow Potential candidate: "Green Energy Turbine" (GET) from the company DEPRAG

Turbo generator GET

Assembly of a turbine and a generator	Properties of the GET	
	Power	5 kW
Compressed air expands through a nozzle	Revolution speed	$35000 {\rm min}^{-1}$
	Pressure (in)	4 bar
Accelerated air drives a turbine, consequently driving	Pressure (out)	1 bar
agenerator	Mass Flow	$4 \frac{\mathrm{m}^3}{\mathrm{min}}$
	Dew point of medium	$-20^{\circ}\mathrm{C}$
Generator connected in delta configuration	Voltage phase to phase	$263\mathrm{V}$
	Current	12 A

► Turbine and generator supported by ball bearings \Rightarrow Lubrication unit is mounted at the GET

Current	$ \perp Z F$
Nominal frequency	583 H

Characterisation of the GET

Further Road Map

Lubrication unit

► During normal operation, the GET will be in a pressure tank \Rightarrow A new set-up with the GET in a pressure tank is in preparation

► Lubrication unit is not pressure resistant

 \Rightarrow Modification of the lubrication unit

► Subsequently some of the characterisation measurements are repeated

► Disadvantage of the lubrication unit is a potential pollution of the driving gas with lubricant

 \Rightarrow Lubrication-free turbo generator would be beneficial

> Another prototype will be built in which the ball bearings are replaced by gas bearings

► The new turbo generator will work with pure nitrogen in a closed circuit instead of ambient air in an open circuit

Helmholtz Institute Mainz, a joint institution of the GSI Helmholtz Centre for Heavy Ion Research and the Johannes Gutenberg University Mainz