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Abstract
We investigate the non-linear response of a pick-up struc-

ture using electrostatic models with the formalism intro-

duced by Bisognano and Leeman. As an example we show

results from the pick-up structure at the CSRe storage ring

at the IMP in Lanzhou.

ELECTROSTATIC MODELS OF AN
ELECTRODE PLATE

Electrostatic Models of Relativistic Beam Re-
sponse
Electrostatic models have been applied for a long time to

the investigation of the response of both pick-ups and kickers.

A classical overview of this subject is due to G. Lambertson

[1]. He gives also an equation of the non-relativistic case,

but this is meant to show that the electrostatic approximation

is good for large Lorentz factors γ.
A more naive approach to the non-relativistic case is to

replace the extremely short field disk of ultra-relativistic

particles by the correct expressions for a free particle [2,

3]. This leads to analytical expressions of the correction,

however the boundary conditions of a real vacuum chamber

are not taken into account.

As this paper mainly aims at a study of the response to

betatron oscillations, the electrostatic approximation is used

throughout.

Parallel Boundaries without Borders
The electrostatic model with parallel boundaries was first

introduced by Neuffer [4]. The underlying conformal map-

ping is explained in some detail in [3]. However we use here

a different coordinate system where the y coordinate is zero

in the center of the vacuum chamber (see Fig. 1).

Figure 1: Electrode with parallel boundaries

The model can be calculated as follows. Take

z =
cos(πy/h) sinh(πw/2h)

cosh(πx/h) + sin(πy/h) cosh(πw/2h)
(1)

where w is the width of one electrode and h is the height of
the chamber.

S(x, y) =
⎧⎪⎪⎨⎪⎪⎩

1
π arctan z if z > 0

0.5 if z = 0
1 + 1

π arctan z if z < 0
(2)

The case distinction is necessary because one has to switch

between Riemann sheets of the inverse tangent function in

order to get an analytic potential. The third case occurs if

the point (x, y) gets vertically close to the electrode.

Rectangular Borders
To model a rectangular chamber requires a slightly more

complicated conformal mapping.

A rectangular chamber in the z = x − y-plane extends

from −a/2 to a/2 in x and from 0 to b in y (see Fig. 2).

A potential V is supposed to exist from x1 to x2 along the
x-axis.
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Figure 2: Conformal mapping of inner part of a rectangle to

the upper half plane (k2 = m).

The potential is calculated after a conformal mapping of

the interiour of the rectangle to the upper complex half-plane.

z = x + iy �→ ζ = ξ + iη (3)

Such a mapping can be realized by [5]

ζ = sn

(
2K (m)

a
z |m

)
(4)

where sn is one of the Jacobian elliptic functions (using the

notation from [6]) and K is a complete elliptic integral of

the first kind. The parameter m depends on the aspect ratio

a/b of the rectangle. It solves the equation [5]
a
b
− 2K (m)

K (1 − m)
= 0 (5)
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which is due to the periods 4K (m) and 2iK (1 − m) of the
doubly periodic function sn(z |m) (see [6]).
The Jacobian elliptic functions of a complex argument

are calculated from real arguments using (see [6])

sn(x + iy |m) =
s d1 + i c d s1 c1

c2
1
+ m s2 s2

1

(6)

where
s = sn(x |m) , s1 = sn(y |1 − m)
c= cn(x |m), c1 = cn(y |1 − m)
d = dn(x |m), d1 = dn(y |1 − m)

(7)

and where cn and dn are also Jacobian elliptic functions.

In order to calculate the potential at a point (x, y), one
maps z = x + iy �→ ζ and gets the physical potential V as

the real part of

Φ(ζ ) =
i
π
log

[
ζ − ξ2
ζ − ξ1

]
(8)

where the edges of the electrode are mapped according to

(x12, 0) �→ (ξ12, 0).
This gives rise to using an inverse tangent function, be-

cause

Im
[
log(u + iv)

]
= arctan

v

u
(9)

The Riemann sheets of the inverse tangent are chosen in

exactly the same way as in Eq. (2).

NON-LINEAR RESPONSE FORMALISM
In the case of betatron motion, the particle coordinates at

the pick-up oscillate:

xn = xδ + Ax sin αx,n (10)

yn = Ay sin αy,n (11)

where xδ = Dδp/p is a dispersive offset, and Ax,y =√
ε x,y βx,y are the betatron amplitudes calculated in the usual

way from the one-particle emittances ε x,y and the betatron
functions βx,y . The betatron angles

αy,n = 2πnQxy + μx,y (12)

where Qxy is the number of betatron oscillations per turn

and μx,y is an initial phase.
To deal with the oscillating particle positions, Bisognano

and Leeman [7] proposed the following elegant formalism:

Make a wave number decomposition of S(x, y), i.e. intro-
duce the 2D Fourier transform

S̃(kx, ky ) =
�

R2

dx dy S(x, y)e−i(kx x+kyy) (13)

Transforming backwards yields

S(x, y) =
1

(2π)2

�

R2

dkx dky S̃(kx, ky )e+i(kx x+kyy)

(14)

where the coordinates x, y now appear only in the exponen-

tial. With the Bessel function expansion

e+ikx xn = e+ikx xδ
∞∑

lx=−∞
Jlx (kx Ax )e+ilxαx (15)

e+ikyyn =

∞∑
ly=−∞

Jly (ky Ay )e+ilyαy (16)

one can therefore write, after reversing the order of sums

and integrals:

S(xn, yn) =
∞∑

lx−∞

∞∑
ly−∞

Slx,ly (Ax, Ay, xδ )e+i(lxαx+lyαy )

(17)

with the coefficients

Slx,ly (Ax, Ay, xδ ) =
1

(2π)2

�

R2

dx dy S̃(kx, ky )

× Jlx (kx Ax )Jly (ky Ay )e+ikx xδ(18)

Using Eq. (10), Eq. (11) it can be shown [3] that the response

of a pick-up yields generally a signal at the frequencies

ω(m, lx, ly ) =
(
m + lxQx + lyQy

)
ωrev (19)

where ωrev is the particle revolution frequency. Which of

these frequencies dominate, depends on the construction of

the pick-up and on the betatron amplitudes. Large signals are

usually detected only at the central harmonics (lx = ly = 0)
and at the betatron sidebands (|lx | = 1 and |ly | = 1).
Particularly important is the case of small betatron am-

plitudes Ax,y . Then one can can use the appromixations

J0(z) ≈ 1, and J1(z) ≈ z/2. One gets

S0,0 ≈ S(xδ, y) (20)

S1,0 ≈ Ax

2i
∂S(xδ, y)
∂x

(21)

S0,1 ≈ Ay

2i
∂S(xδ, y)
∂y

(22)

A more detailed discussion is given in [3, 7].

SIMULATION RESULTS FOR CSRE
STOCHASTIC COOLING

Electrode Geometry
Presently a stochastic cooling system is being installed at

the CSRe storage ring at the Institute of Modern Physics in

Lanzhou, China [8]. Three pick-up and kicker systems have

been installed which all share the same transverse geometry

[9].

The pick-up (Fig. 3) consists of four equal electrodes with

w = 87mm and h = 62mm (using the notation of Fig. 1).

The electrodes are arranged symmetrically with respect to

the center of the vacuum chamber. The horizontal distance

from the center to the center of each electrode is 57.5mm.
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Figure 3: Geometry of CSRe electrodes.

We denote the different electrodes with the symbols lu
(left upper), ll (left lower), ru (right upper), and rl (right
lower). The signals of each single electrodes can be pro-

cessed in three different modes:

1. The sum mode (symbollically lu + ll + ru + rl). This
mode can be used for longitudinal cooling (time of

flight or notch filter).

2. The horizontal difference mode (symbollically lu+ ll−
ru−rl). This mode can be used for longitudinal cooling
(Palmer) and for horizontal betatron cooling.

3. The vertical difference mode (symbollically lu − ll +
ru − rl). This mode can be used for vertical betatron
cooling.

Sum Mode
Figure 4 shows the case if the sum from all four electrodes

is taken. We examine this case in some detail.

Each curve in Fig. 4 shows the sensitivity as a function of

x for fixed y. The different curves are plotted for different

values of the vertical coordinate y. For x = y = 0 the value

of the sensitivity is S ≈ 0.58. Towards the middle of the
plates (x, y) = (±57.5mm, 0mm) it rises on both sides to
S ≈ 0.85 and drops steeply to 0 towards higher values of
|x |. At x = 0 the sensitivity drops rapidly to 0 if the verical
position approaches the V = 0 position in the gap between
the plates. On the other hand it gets close to 1 in the vicinity

of the plates.
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Figure 4: CSRe sum response.

Figure 5 shows the sensitivity S0,0 (central revolution fre-
quency harmonics) for a particle with xδ = 0mm perform-

ing betatron oscillations with various amplitudes Ax and Ay .

Each curve is plotted for fixed Ay and 16 curves are plotted

for 0mm≤ Ay ≤ 30mm.

As to be expected the sensitivity for zero amplitudes is

S ≈ 0.58. As a function of Ax the sensitivity rises until the

betatron amplitude is slightly larger than 57.5mm. For very

small horizontal amplitudes Ax , the sensitivity decreases for

large Ay , but for Ax ≈ 35mm a point is reached where S0,0
becomes roughly independent of Ay .

As a practical consequence of such considerations, it

might be too naive to derive the number of particles in a

beam from the area in the Schottky spectra, if they are mea-

sured at significantly different transverse emittances.
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Figure 5: CSRe response to betatron oscillations in sum

mode.

Horizontal Difference Mode
Figure 6 shows the response in the horizontal difference

mode. The plot is made in the same way as Fig. 4. The

horizontal response is more or less linear up to |x | ≈ 40mm
and the dependence on y becomes predominant only in the

vicinity of the plates.
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Figure 6: CSRe horizontal difference response.

Figure 7 shows the response S1,0 in the same way as Fig. 5.
The linearity in Ax is very good for small amplitudes and

the dependence on Ay is almost negligible.
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Curves like these can also be used to verify the approxi-

mation Eq. (21).
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Figure 7: CSRe response to betatron oscillations in horizon-

tal difference mode.

Vertical Difference Mode
Figure 8 shows the response in the vertical difference

mode. The plot is made in the same way as Figure 4 At x =
0mm the sensitivity does not exceed |S | ≈ 0.15. Whereas

it is approximately linear in y in the vicinity of the plates

(for |x | ≈ 57.5mm), there is a maximum at y ≈ 16mm, if

x � 20mm.
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Figure 8: CSRe vertical difference response

Figure 9 shows the response S0,1 in the same way as Fig-
ure 5.

The nonlinearity for x � 20mm mentioned above is also

clearly visible in the S0,1 response. As a result it might be
argued that pick-ups with a horizontal gap in the middle are

not ideally suited for vertical betatron cooling.

CONCLUSIONS
It has been shown that the non-linear response formalism

yields detailed informations on the response of electrode

structures to particles performing betatron oscillations.
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Figure 9: CSRe response to betatron oscillations in vertical

difference mode

It is straightforward to implement it on a computer using

digital Fourier transform techniques.

It is recommended to use it as a valuable tool for electrode

design.
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